DNA Damage Response;Genetic Toxicology;DNA repair;mutagenesis;genetics
Lab Description
My Research focuses on understanding basic mechanisms of mutagenesis and on fail-safe mechanisms that ensure faithful genome maintenance and the elimination of compromised cells by programmed cell death. We mainly use C. elegans as an invertebrate model organism and employs advanced genetics, genomics, cell biology and next generation sequencing based approaches. Despite of its simplicity, C. elegans is a multicellular organism that shares many fundamental genetic programs with humans. Thus, many results obtained in the C. elegans system are likely to be applicable to mammalian systems. Our studies on C. elegans are facilitated by the simplicity of the organism at the developmental and anatomical level, by the ease of its maintenance, as well as by the power of forward and reverse genetic procedures. At the same time, we use mammalian cells to translate our insights gained from the invertebrate model. Our studies are relevant for understanding fundamental mechanisms leading to cancer formation and also aimed to better understand and more effectively use a range of agents commonly used for cancer therapy. We are engaged in multiple national and international collaborations and are currently transferring our lab from Scotland to Korea.