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Abstract

Maintaining genome integrity is particularly important in germ cells to ensure faithful trans-

mission of genetic information across generations. Here we systematically describe germ

cell mutagenesis in wild-type and 61 DNA repair mutants cultivated over multiple genera-

tions. ~44% of the DNA repair mutants analysed showed a >2-fold increased mutagenesis

with a broad spectrum of mutational outcomes. Nucleotide excision repair deficiency led to

higher base substitution rates, whereas polh-1(Polη) and rev-3(Polζ) translesion synthesis

polymerase mutants resulted in 50–400 bp deletions. Signatures associated with defective

homologous recombination fall into two classes: 1) brc-1/BRCA1 and rad-51/RAD51 para-

log mutants showed increased mutations across all mutation classes, 2) mus-81/MUS81

and slx-1/SLX1 nuclease, and him-6/BLM, helq-1/HELQ or rtel-1/RTEL1 helicase mutants

primarily accumulated structural variants. Repetitive and G-quadruplex sequence-contain-

ing loci were more frequently mutated in specific DNA repair backgrounds. Tandem duplica-

tions embedded in inverted repeats were observed in helq-1 helicase mutants, and a unique

pattern of ‘translocations’ involving homeologous sequences occurred in rip-1 recombina-

tion mutants. atm-1/ATM checkpoint mutants harboured structural variants specifically

enriched in subtelomeric regions. Interestingly, locally clustered mutagenesis was only

observed for combined brc-1 and cep-1/p53 deficiency. Our study provides a global view of

how different DNA repair pathways contribute to prevent germ cell mutagenesis.
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Introduction

Germ cells are required to pass genetic information from one generation to the next, rendering

the maintenance of their genetic integrity particularly important. While germ cell mutations

are the basis of evolution, mutational events tend to be detrimental and are associated with

both reduced fitness and inherited disease.

Endogenous mutagenesis can be caused by nucleotide mis-incorporation during replication

and by reactive cellular metabolites. Hydrolytic reactions trigger abundant depurinations,

depyrimidinations, and the deamination of cytosine and 5-methylcytosine (for review [1]).

Reactive oxygen species, byproducts of oxidative phosphorylation and oxygen-dependent

enzymatic processes, induce 10,000–100,000 DNA lesions per cell per day, including base

modifications such as 8-oxo-dG, thymine glycol and DNA single-strand breaks [2]. In addi-

tion, enzymatic and non-enzymatic mechanisms lead to base methylations. For instance,

3-methyl-adenine and 3-methyl-cytosine can lead to mutation by blocking replication, and

O6-methyl-guanine leads to G>A changes (for review [1]). Metabolic byproducts such as reac-

tive aldehydes form DNA adducts that can crosslink bases from complementary DNA strands

generating obstacles to replication and transcription.

DNA double-strand breaks (DSBs) are among the most toxic DNA lesions and arise when

the replication fork is stalled by base modifications, repetitive DNA, DNA sequences prone to

form tertiary structures, or collision with the transcription machinery [3]. Nevertheless, some

cellular events require DSBs to be induced naturally, for example during immunoglobulin

gene rearrangement to ensure immunoglobulin diversification. Additionally, during germ cell

meiosis multiple DSBs are introduced in each chromosome, resulting in at least one crossover

recombination event between homologs, thereby facilitating the exchange of genetic informa-

tion and orderly chromosome segregation (for review [4]). Recombination requires a free

DNA end to search for and invade a homologous DNA strand, which acts as a template to

facilitate the restoration of genetic information. When DSBs occur in repetitive DNA such as

tandem repeats or interspersed repeat elements like Line and Alu sequences, ‘homology

search’ provides a formidable challenge.

Nevertheless, only a vanishingly small fraction of primary lesions leads to mutations, highlight-

ing how effective DNA damage response mechanisms are in detecting and mending multifarious

forms of DNA damage. The analysis of the observed mutations has the potential to shed light on

the primary mutagenic lesion. When the amount of DNA damage introduced by a mutagenic

process exceeds the capacity of DNA repair, distinct patterns of mutations, referred to as muta-

tional signatures or spectra, arise. Here, we characterize genome-wide mutational spectra by ana-

lysing the number and distribution of single and multi-nucleotide variants (SNVs and MNVs),

small insertions and deletions (indels) and structural variants (SVs) composed of larger (over 400

bp) deletions, inversions, duplications, and chromosomal translocations.

The rates and types of germline mutations were previously studied in humans and model

organisms such as mouse, fruit fly, C. elegans, and primates [5–8]. These studies discovered a

relatively uniform mutation pattern, sometimes referred to as ‘signature 5’ [6, 9], which has

also been observed in different human somatic tissues. The underlying aetiology of this signa-

ture–and whether it is the product of a single, or multiple mutational processes–remains

unclear. We recently reported a high-level analysis comprising 2700 C. elegans genomes

treated with 11 genotoxic agents. ~40% of analysed DNA repair mutants exhibited altered

mutations, thus highlighting a prominent role of DNA repair pathways in shaping mutation

rates and signatures [10].

Here, we focus our analysis on mutations accumulating when C. elegans is propagated over

generations in the absence of exposure to exogenous mutagens to enhance our understanding
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of how mutagenesis is prevented in the germ cell lineage, largely using the same primary set of

data. This study encompasses 528 genomes derived from wild-type and 54 single and 7 double

DNA repair mutants. DNA repair mutants were chosen to encompass the majority of known

DNA repair and damage response pathways. We provide a comparative, detailed and system-

atic genome-wide analysis of the contribution of these DNA repair pathways towards main-

taining germ cell genome integrity.

Results

Mutation rates in C. elegans wild-type and DNA repair mutants

C. elegans offers a suitable system to study mutation accumulation (MA) over generations

based on its short life-cycle of three to four days and its ability to self-fertilize. Self-fertilization

enables the clonal propagation of lines from single animals randomly picked in each genera-

tion. In our mutation accumulation experiments (MA), we propagated (typically for 20 or 40

generations) 5–10 clonal lines for each genotype and randomly selected a minimum of 3 lines

for sequencing (Fig 1A) (S1 Table for list and description of DNA repair mutant lines ana-

lysed). Out of 528 whole genome sequencing (WGS) datasets we analyse as part of this study

(S1 Table), 472 were previously deposited (S1 Table) [10], and 56 (corresponding to 5 newly

generated double and 6 single mutant strains) were newly deposited (S1 Table). DNA repair

mutants were chosen to encompass the majority of known DNA repair and damage response

pathways. Genomic DNA for sequencing was isolated from starved nematode populations,

each a clonal expansion from a single L4 stage hermaphrodite from the first or last propagated

generation (Materials and Methods, [10–12]). Crucially, these lines pass through a single-cell

bottleneck provided by the zygote, enabling us to analyse how mutations arise in the germline

(Fig 1A).

Calculating mutation rates from more than 30 wild-type MA lines including 5 lines grown

for 40 generations, comparing mutations from the first and last generation (Fig 1A), we refined

our previous mutation rate estimations [10–12] to ~0.9 mutations in the diploid C. elegans
genome per generation (Materials and Methods). This corresponds to ~2.9 x 10−10 (95% CI:

2.5 x 10−10–3.2 x 10−10) mutations per base pair and germ cell division. Mutations were equally

distributed across the wild-type genome with no evidence of clustering (Fig 1B). The most fre-

quent mutations were a) single base insertions, with prevalent T>A changes in the context of a

5’A and a 3’ T, and b) deletions in homopolymeric sequences (Fig 1C), indicative of replication

slippage as a source of mutations in wild-type. Together with our previous data on MMR defi-

cient strains [11] and the estimates provided below, this suggests that replication polymerase

slippage in homopolymeric sequences is the most frequent type of genetic error.

Across 61 C. elegansDNA repair deficient mutants ([10–12], S1 Table), the median muta-

tion rate was close to that observed in wild-type: 0.82 heterozygous base substitutions per gen-

eration compared to 0.57 (standard deviation SD = 0.04) in wild-type, 0.25 indels (0.26

(SD = 0.03) in wild-type) and 0.03 SVs (0.02 (SD = 0.01) in wild-type). However, mutation

rates varied by mutation type, making the comparison of overall mutation rates misleading.

We therefore stratified mutations into 1) single and multi-nucleotide variants, 2) indels smaller

than 400 base pairs and 3) SVs (Fig 2, S1 Fig). Interestingly, 69% (42 out of 61) of DNA repair

deficient strains displayed mutation rates significantly different from wild-type in at least one

mutation class (false discovery rate FDR = 5%), with an over 2-fold change in 44% (27 out of

61) of mutants.

Besides the previously reported high mutation rate in DNA mismatch repair (MMR)

mutants (pms-2 andmlh-1), with 25–30 times more base substitutions and a ~100-fold

increase in indels per generation [11, 13, 14], a ~2 fold increase of single SNV was observed in
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several mutants defective for NER, HR, direct damage reversal (DR), and helicases (Fig 2, red

dots). Moreover, ~3–5 fold more SNVs occurred in smc-5 and smc-6HR mutants, as well as in

the cep-1; brc-1 brd-1 triple mutant defective for the C. elegans orthologs of BRCA1, its binding

partner BARD1, and p53 (Fig 2, red dots). The DNA interstrand crosslink repair mutant dog-

Fig 1. Experimental outline and background mutagenesis in wild-type. A. L4 larvae (F1 generation) from a parental founder strain (P0) were

individually picked onto NGM plates and allowed to self-fertilize prior to picking individual L4 larvae of the next generation (F2) from each F1 plate. This

process was repeated until clonal lines reached generation F20 or F40. Clonal lines were then allowed to expand, harvested, and prepared for whole

genome sequencing (Materials and Methods). B. Mutation types and their location on the 6 C. elegans chromosomes (I-V and X) across all wild-type

samples and mutation classes. The height of the white bars corresponds to the length of the respective C. elegans chromosome. Single nucleotide variants

are indicated by a dot, dinucleotide variants (DNVs) by a square, indels divided in deletions (D) and insertions (I) by a triangle, and structural variants

(SVs) by a line. C. Average number of heterozygous mutations in the N2 wild-type genome per generation across all mutation classes and types. Single

nucleotide variants are shown in the context of their 5’ and 3’ base. Grey bars denote 95% credible intervals for the number of mutations in each type.

“Complex indels” class denotes deletions with insertions. Data for N2 was previously shown in ([10] Fig 1C) . Information related to the 528 whole genome

sequencing WGS primary-source datasets (56 deposited in this study, 472 deposited in (Suppl Data 1 and Supple Note 1 of [10] can be found in S1 Table).

https://doi.org/10.1371/journal.pone.0250291.g001
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Fig 2. Mutation rates across 60 C. elegans genotypes stratified by mutation type: Base substitutions, indels, and structural variants. Mutation rates

are shown as number of heterozygous mutations per generation for N2 wild-type (WT), and mutants used in this study grouped by the major DNA

repair pathway they contribute to; direct damage reversal (DR), base excision repair (BER), nucleotide excision repair (NER), DNA double-strand break

repair (DSBR), translesion synthesis (TLS), crosslink repair (ICLR), spindle assembly checkpoint (SAC), apoptosis, and mismatch repair (MMR). Base

substitutions are shown in red (top), indels in green (center) and structural variants in blue (bottom). Dotted lines denote the mutation rates for wild-

type. Error bars show the 95% confidence intervals; large dots represent variants with 2-fold increased or decreased mutation rates over N2 wild-type

which are statistically significant with a false discovery rate (FDR) below 5%. All CIs which extend below the lower edge of the plot have zero as their

lower border. Information related to the 528 whole genome sequencing WGS primary-source datasets (56 deposited in this study, 472 deposited in

(Suppl Data 1 and Supple Note 1 of [10] can be found in S1 Table).

https://doi.org/10.1371/journal.pone.0250291.g002
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1/FANCJ accumulated ~6 times more indels compared to wild-type, and several HR and TLS

deficient strains showed ~2 fold increased indel rates (Fig 2, green dots). Finally, the number

of structural variants (SVs) tended to be elevated in lines compromised for HR and in various

DNA helicase mutants (dog-1, helq-1, him-6/BLM, rtel-1) (Fig 2, blue dots).

Several DNA repair mutants, namely fcd-2/FANCD2 and fnci-1/FANCIDNA ICL-repair

defective lines, and the microhomology mediated end-joining (MMEJ) defective polq-1/POLQ
mutant exhibited reduced indel rates (Fig 2, green dots) Additionally, polq-1mutants harboured

reduced SNVs (Fig 2, red dot). POLQ-1 dependent MMEJ is an error prone pathway, in which

resected 3’ single-stranded overhangs pair at their complementary terminal nucleotide(s) to

prime DNA synthesis, often leading to small deletions [15–18]. However, given that indel and

SV mutation rates in our dataset are already low in wild-type and more wild-type than mutant

samples were included in the analysis (wild-type n = 30, mutant n = 4–8) the sample variance in

genotypes with mutation rates close or lower to wild-type may be underestimated. We therefore

caution that the observed reductions in mutagenesis levels are likely to be false discoveries.

Direct damage reversal (DR), base excision repair (BER), nucleotide

excision repair (NER), and single-strand break (SSB) repair

We next wished to systematically characterise the signatures and features of mutations accu-

mulated over generations by DNA repair pathways. Mutants deficient in DR, BER, and NER

did not show large changes in the overall mutation spectra, but several small differences in par-

ticular mutation types (Fig 3A, S2A Fig).

In addition to AGT-1, which facilitates direct damage reversal by removing methyl moieties

from O6-methyl guanine, AGT-2 encodes for a further predicted C. elegans O6-alkylguanine

DNA alkyltransferase [19]. We found a 2-fold increased mutation rate in agt-2 deficient lines

(Fig 2), owing to an elevated frequency of C>T changes caused by the mispairing ofO6-methyl

guanine with T (Fig 3A and 3B). Interestingly, agt-2mutants exhibited a moderate degree of

mutation clustering, evidenced by 7 cases of 2–3 mutations located in closer proximity to each

other than expected by chance, scattered across 10 agt-2mutant lines (Fig 3C, S2B Fig). We

also confirmed increased numbers of C>T changes in mutants defective for ung-1, an Uracil-

DNA glycosylase that excises uracil during BER [20] (Fig 3A and 3B). Uracil is introduced via

UTP mis-incorporation or cytosine deamination and pairs with adenine, which leads to C>T

mutations. Other BER mutants, including mutants deficient in PARP-1 and PARP-2, the two

C. elegans poly-ADP ribose polymerases needed for SSB repair, did not show altered mutation

rates compared to wild-type (Fig 2, S2A Fig).

The NER pathway is involved in the repair of bulky DNA adducts and DNA crosslinks,

both of which cause a structural distortion of the DNA double helix [21]. xpa-1, xpf-1, and

xpg-1 lines compromised for all NER and xpc-1 lines solely defective for global genome NER

(but not csb-1 lines uniquely defective for transcription coupled NER) showed increased muta-

tion rates without overt changes in mutational signatures (Figs 2, 3A and 3B, S3A Fig). We

speculate that this increased mutagenesis might be caused by cyclopurines induced by reactive

oxygen species, and/or from exposure to ambient and fluorescent light. Comparison between

the C. elegansNER signature adjusted for the human nucleotide composition (see [11]) and

COSMIC signatures SBS8 (associated with NER using human organoids) and SBS5 (associated

with NER defects in urothelial cancers) showed no conformity (cosine similarity scores 0.64

and 0.56, respectively) (S3B Fig). DSB repair by nonhomologous DNA end-joining (NHEJ),

microhomology mediated end-joining (MMEJ) and homologous recombination (HR).

DSB repair is facilitated by several redundant pathways. HR is considered largely error-free,

restoring genetic information using an intact homologous DNA strand as a repair template.
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Fig 3. Mutation analysis of C. elegans BER, NER, and DR mutants with mutation rates or spectra different from wild-type. A. Mutational

signatures of BER, NER, and DR mutants that display statistically significantly different mutation spectra than wild-type shown as the number of

mutations per generation across all mutation classes. Underscores (bold coloured bars) below each mutation profile indicate mutation types where

the total mutation numbers are different from wild-type, three stars indicate genotypes with significantly different rates of substitutions, indels or SVs

compared to those in wild-type (FDR< 5%). Single nucleotide variants are shown in the context of their 5’ and 3’ base context. B. Number of

mutations of all classes shown for each individual sequenced line of the indicated genotype and generation. The four sequenced wild-type P0 lines

reflect the variance present in initial generations. Mutations are shown cumulatively with mutations present in generation F20 included in F40. C.

Mutation types of all classes and their location on the 6 C. elegans chromosomes (I-V and X) observed across agt-2mutant lines. The height of the

white bars corresponds to the length of each individual chromosome. Single nucleotide variants (SNVs) are indicated by a dot, dinucleotide variants

(DNVs) by a square, indels divided in deletions (D), insertions (I), and deletions with insertions (DI) by a triangle, and structural variants (SVs) by a

line. Clustered mutations that are present within a single agt-2 line are depicted by enlarged bold symbols. An analysis of brca-1, him-6 and smc-6
swas previously shown in ([10] Fig 1C). Information related to the 528 whole genome sequencing WGS primary-source datasets (56 deposited in this

study, 472 deposited in (Suppl Data 1 and Supple Note 1 of [10] can be found in S1 Table).

https://doi.org/10.1371/journal.pone.0250291.g003
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End-joining pathways, classical NHEJ (c-NHEJ) and MMEJ, are typically error-prone and join

free DNA ends. c-NHEJ largely acts on blunt DNA ends, while MMEJ requires short DNA

resection to generate complementary 2–20 base single-stranded DNA termini to join broken

DNA ends [16].

Inactivation of the core components of NHEJ, cku-80 and lig-4, did not produce changes in

mutagenesis (Fig 2, S4A Fig). To study the effect of defective HR, we investigated mutation

accumulation in brc-1 brd-1 double mutants. BRC-1/Brca1 and BRD-1/Bard1 proteins form a

heterodimer and the corresponding deficiencies are considered epistatic [22]. We report on

the double mutant as our genome sequencing analysis revealed that the brc-1mutant strain we

used also contained a brd-1 deletion (S1 Table). In contrast to end-joining mutants, the brc-1
brd-1 double mutant showed increased numbers of single nucleotide variants (Fig 2), small

deletions between 5 and 50 bases (Fig 4A), and tandem duplications (TDs) between 1.6 and

500 kbps, with a median of ~12 kbps (Fig 4B and 4C, S5 Fig). Overall, the mutational signature

of C. elegans BRC-1 BRD-1 deficiency agrees with the flat profile of increased base substitu-

tions described in HR deficient human cancers [23, 24], BRCA1 negative human lymphoblas-

tic MA lines [25] and also resembles the pattern of SVs associated with BRCA1 loss in breast

and ovarian cancers [26–28]. HR has been shown to be the predominant DNA repair pathway

in C. elegans germ cells while NHEJ has a role in somatic cells [29, 30]. Our finding that muta-

tion rates are not elevated in NHEJ mutants is consistent with these observations.

Homologous recombination repair requires substantial end processing at the site of DSBs,

which is performed by a series of nucleases creating single-stranded DNA overhangs. As

mutants of C. elegans nucleases rad-51,mre-11, and com-1 are sterile due to defects in meiotic

recombination thus precluding MA experiments, we analysed mutation rates in strains defi-

cient for the rad-51 paralog rfs-1 and for rip-1, which encodes a RFS-1 interacting protein [31].

The RFS-1 RIP-1 complex is thought to stimulate the remodelling of presynaptic RAD-

51-coated DNA filaments to facilitate strand invasion for recombinational repair [31]. We

observed an overall 2-fold elevated mutagenesis in rfs-1 and rip-1mutants (Fig 2), defined by

increased numbers of base substitutions in both strains, increased numbers of small deletions

in rfs-1, and increased numbers of SVs in rip-1 (Fig 4A and 4B, S6 Fig). Intriguingly, we

observed three ‘translocation type’ events in rip-1 but not in any other MA line we analysed

(Fig 4B, S6 and S7 Figs). We deduced that these events involved templated insertions of 200–

4000 bp sequences, which showed strong homology to multiple genomic regions, including to

one homeologous region located as far as 275 kb away from the donor sequence on the same

chromosome, accompanied by a deletion of several hundred basepairs at the acceptor site (S7

Fig). These templated insertions may be explained by strand invasion into homeologous tem-

plate DNA, in line with the pro-recombinogenic role of RIP-1 in mediating RAD-51 dissocia-

tion from invading strands [31].

SMC-5 and SMC-6 are components of a ring shaped cohesin complex, considered to tether

broken DNA strands to the repair template on the sister chromatid to facilitate HR [32]. smc-5
and smc-6mutants, which have been shown to exhibit defects in meiotic recombination

between sister chromatids [32, 33] showed an increased rate of base substitutions and SVs,

largely comprised of deletions, tandem duplications, and complex rearrangements (Figs 2, 4A

and 4B, S6 Fig). In agreement with a high preponderance of SVs, these lines could only be

propagated for up to 5 generations before succumbing to sterility. In contrast to brc-1 brd-1
mutants, smc-5 and smc-6mutants exhibited a high proportion of large ~10 kb deletions (Fig

4C). Given the role of the ring-shaped SMC-5-6 complex in enforcing close proximity of dam-

aged and template DNA, we hypothesize that double-strand break induced HR is initiated in

the absence of the SMC-5-6 complex, but the displacement loop (D-loop) formed following

strand invasion falls apart prematurely resulting in the loss of genetic material.
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Fig 4. Mutational signatures and genomic features of mutations in DSBR deficient C. elegans. A. Mutational signatures of DSBR mutants that

exhibited statistically significant different mutation rates to wild-type displayed in numbers of mutations per generation. Bold coloured bars denote

individual mutation classes where the number of mutations is different from wild-type, an underscore below each mutation profile indicates mutation

types with total mutation numbers different from wild-type, and three stars indicate genotypes which have rates of substitutions, indels or SVs

significantly different compared to wild-type (FDR< 5%). B. Estimated composition of structural variants per generation as estimated for wild-type and

DNA repair mutants with elevated SV rates. C. Size distributions of tandem duplications (top, pink) and deletions (bottom, green) across wild-type and

mutants with elevated SV rates. D. Clustering of mutations in DNA repair deficient mutants. Grey dots reflect the average proportions of clustered

mutations. Error bars denote 95% confidence intervals. Mutants with a significantly different propensity for mutation clustering from wild-type (dotted

black line) are shown and highlighted in red. ‘Information related to the 528 whole genome sequencing WGS primary-source datasets (56 deposited in

this study, 472 deposited in (Suppl Data 1 and Supple Note 1 of [10] can be found in S1 Table).

https://doi.org/10.1371/journal.pone.0250291.g004
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The structure-specific nucleases MUS81 and SLX1 act in conjunction to process Holliday

Junctions, key four-way DNA intermediates of HR [34–36]. slx-1 andmus-81mutants dis-

played similar mutational signatures characterized by increased numbers of base substitutions

and SVs, with large deletions and TDs being most prevalent (Figs 2, 4A and 4B, S8 Fig). In

contrast, the absence of GEN-1, a canonical Holliday Junction resolvase [37], or LEM-3, the

ortholog of mammalian Ankle1, recently implicated in the processing of recombination inter-

mediates that persist beyond anaphase [38], did not yield overt changes in mutation rates or

signatures (Fig 2, S4A Fig).

DNA helicases are enzymes that unwind double-stranded DNA. Among their multiple

roles in HR, they contribute to the unwinding of D-loop structures, a function especially

important when a broken DNA end invades a template strand with imperfect sequence homol-

ogy, thus preventing recombination with homeologous sequences. To investigate mutation

patterns induced by helicase deficiencies, we analysed mutants defective for the three C. ele-
gans RecQ helicases: him-6—the ortholog of the mammalian Bloom syndrome gene which

encodes for a helicase involved in HJ resolution and prevention of crossover recombination

[39, 40]; wrn-1, the ortholog of Werner’s syndrome gene which encodes for a helicase possess-

ing an N-terminal 3’-5’ exonuclease domain, and capable of resolving aberrant DNA structures

with 3’ recessed ends [41, 42]; and rcq-5, the ortholog of human RECQ5, which displaces

RAD-51 from single-stranded DNA and thus prevents excessive recombination [43]. In addi-

tion, we analysed lines deficient for rtel-1 which encodes a conserved helicase involved in

genome stability and telomere maintenance [44]. While rcq-5 and wrn-1mutants did not

show increased mutagenesis, him-6mutants demonstrated 8-fold elevated SV rates compared

to wild-type, with 0.15 SVs per generation (SD = 0.03) (Figs 2, 4A and 4B, S4A and S9 Figs).

Even more SVs were observed in rtel-1mutants with an estimated rate of 0.8 TDs per genera-

tion (SD = 0.2) (Figs 2, 4A and 4B), which spanned on average 8 kbps and were generally

smaller than TDs observed in brc-1 brd-1mutants (Fig 4C). In addition, rtel-1 deficiency led to

~2.5 fold increase in base substitutions (Figs 2 and 4A). RTEL-1 has a unique role in prevent-

ing heterologous recombination during break-induced repair and in promoting non-crossover

products [45, 46]. Interestingly, loss of mammalian RTEL1 yields a high number of large dele-

tions and complex rearrangements as a result of excessive crossover and heterologous recom-

bination [45], unlike our data which showed a more simple, tandem duplication signature (Fig

4, S8 Fig). In our experiments, C. elegans rtel-1mutants did not grow beyond F15, and most

lines became sterile within 5 generations (F5) (S1 Table), suggesting that the absence of RTEL-

1 may lead to accumulation of SVs incompatible with organismal viability.

Investigating the genomic context of structural variants, we did not observe any overt

changes in the presence of microhomology at the breakpoints compared to wild-type (S4B and

S4C Fig). In addition, we confirmed that SVs across almost all HR deficient genetic back-

grounds tended to be associated with repetitive DNA regions (S4D Fig), in line with previous

reports [47].

Among the HR mutants, we note that brc-1 brd-1, rfs-1, rip-1, smc-5, and smc-6 display ele-

vated levels of base substitutions. Increased base substitutions were also observed in BRCA1
defective human lymphoblastic MA lines [25]. Moreover, smg-1, rip-1, and rfs-1 exhibit evi-

dence of mutational clustering (Fig 4D), with about 15% of base substitutions occurring within

distances smaller than 1 kbps (Materials and Methods). Clusters of mutations may arise

through error-prone polymerases reading across lesions [48–50]. In addition, the NHEJ or

MMEJ error-prone DSB repair pathways can also generate clustered mutations when DNA

strands with incompatible ends are joined together [51]. The absence of clustered mutations in

NHEJ or MMEJ mutants could be explained by the action of redundant error-free HR

pathways.
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Translesion synthesis (TLS)

TLS polymerases are specialised DNA polymerases that replicate across and insert nucleotides

opposite damaged bases. Depending on the inserted nucleotide, this results in error-free or

error-prone lesion bypass [52]. C. elegans rev-3/REV3Lmutants, deficient in the catalytic sub-

unit of polymerase z, accumulated increased numbers of 50–400 bp deletions (Figs 2 and 5A,

S10 Fig). Similarly, polh-1/POLH (lf31) and polh-1/POLH (ok3317), DNA polymerase η
mutants, displayed 50–400 bp deletions, with only polh-1(lf31) reaching clear statistical signifi-

cance over the generations tested (Fig 2, S10 Fig). Our data suggest that REV-3, and likely

POLH-1, prevent DNA breaks by reading across damaged bases that also occur in the absence

of exogenous DNA damage. Our results on REV-3 and POLH-1 are in line with previous find-

ings in C. elegans [18, 53–55], yeast, and mammalian cells [56, 57].

In addition, we observed a slightly increased base substitutions rate, namely for C>T

changes, in polk-1 (Fig 5A, S10 Fig), which may indicate a role in error-free bypass of endoge-

nously arising guanine modifications [58]. Mutants defective in REV-1 TLS polymerase did

not demonstrate a significant and reliable change in mutagenesis compared to wild-type

(S10 Fig).

Mutation accumulation in mutants deficient for DNA crosslink repair

The repair of DNA interstrand crosslinks (ICL) provides a formidable task. It involves the Fan-

coni Anaemia (FA) proteins required for sensing ICLs and assembling various repair factors at

the site of damage [59–61]. Here we investigate mutant lines defective for FNCM-1/FANCM,

a helicase involved in DNA damage recognition, FANCI-1/FANCI, and FCD-2/FANCD2, the

key Fanconi repair proteins ubiquitinated by an E3 ubiquitin ligase complex and thought to

assemble proteins required for ICL processing. We did not observe overt differences in muta-

genesis between fcd-2, fncm-1, or fnci-1mutants, and wild-type, suggesting that the C. elegans
Fanconi Anemia ICL repair pathway does not significantly contribute to the repair of DNA

damage that occurs under normal, unchallenged growth conditions (Fig 2, S11A Fig). FAN-1/

FAN1 is a conserved structure-specific DNA nuclease that can resolve ICLs independently of

the FA pathway [62–64]. As for the core FA components, we did not observe elevated muta-

tion rates in fan-1mutant lines (Fig 2, S11A Fig).

DOG-1, the C. elegans ortholog of the mammalian FANCJ helicase, facilitates error-free

replication through DNA tertiary structures formed by G-rich DNA sequences, referred to as

G-quadruplexes [65–67]. dog-1mutants exhibited increased mutagenesis (Fig 2) as previously

described [67], with 6-fold higher numbers of 50–400 base pair indels and 13 fold more SVs,

predominantly deletions (Fig 5A, S9 Fig). Across all 11 dog-1 deficient samples, 81% of long

deletions (17/21) and 78% (109/139) of shorter, 50–400 bp deletions overlapped with one of

the 4291 regions in the C. elegans genome predicted to form G-quadruplex structures [68], in

line with previous reports [67] (Fig 5B, S9 and S11B Figs). We found that G-quadruplex

induced deletions occurred at a frequency of about 1 lesion per generation in dog-1mutants.

We rarely observed SVs associated with G-quadruplex forming sequences in other DNA repair

mutants (Fig 5B, S5, S6, S8, S9 Figs), including him-6, encoding the C. elegans ortholog of the

mammalian BLM helicase (S9 Fig), which has been shown to prevent replication fork stalling

at G-quadruplex sites in human and murine cells in conjunction with FANCJ [69].

Another helicase mutant that displayed a distinct phenotype was helq-1/HELQ, encoding

for a conserved helicase and thought to act in DNA crosslink repair in a pathway separate

from FCD-2 [70]. In addition, helq-1 has been shown to be synthetically lethal with rfs-1, due

to its role in resolving DSB repair intermediates during meiosis [71]. helq-1 deficient lines

showed an increased proportion of tandem duplications (TDs) compared to other strains
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Fig 5. Signatures and genomic features of mutations in TLS and ICLR deficient C. elegans. A. Mutational signatures of TLS and ICLR mutants

that exhibited statistically significant differences to wild-type mutation rates displayed in numbers of mutations per generation. Same layout as Fig

4A. B. Proportion of indels (brown) and SVs (black) in G-rich regions in wild-type and across genotypes with elevated rates of SVs. Dotted line

represents the proportion of variants falling into these regions as expected by chance. C. Tandem duplications (TDs) in helq-1mutants. An analysis of

rev-3 was previously shown in ([10] Fig 1C). Information related to the 528 whole genome sequencing WGS primary-source datasets (56 deposited in

this study, 472 deposited in (Suppl Data 1 and Supple Note 1 of [10] can be found in S1 Table).

https://doi.org/10.1371/journal.pone.0250291.g005
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(Figs 4B and 5A, S5 Fig). TDs ranged in size between 457 and 8089 bp with a median of 1270

bp (Fig 4C). The mutational spectrum of helq-1 differed from that of brc-1mutants, in which

deletions of 6–50 bp and TD (with a median size of ~12 kbps) were observed with comparable

frequency (Fig 4B and 4C, S5 Fig). Interestingly, 41% (7/17) of TDs in helq-1mutants were

associated with inverted repeat sequences (S2 Table). To investigate how TDs present at

inverted repeats relate to DNA replication directionality, we used the closest origin of replica-

tion as a reference point and tested the correlation between the orientation of the TD break-

points and the direction of leading strand synthesis. Out of the 7 inverted repeat-associated

TDs, we could determine the directionality of replication in 5 cases (Materials and Methods,

S2 Table). In 4 cases, TD oriented in line with leading strand replication. In 3 of these, inverted

repeats were present downstream of the TD, and in one case upstream (Materials and Meth-

ods, S2 Table). We speculate how these tandem duplications may arise in the discussion. In

summary, our data suggest that the DNA helicases HELQ-1 and DOG-1 are required to facili-

tate replication fork passage through distinct secondary structures (Fig 5B and 5C). While

DOG-1 is needed for the passage through G-rich structures [65], HELQ-1 may help to over-

come stem loop structures, possibly on the lagging strand.

Mutations and subtelomeric chromosome fusions in ATM-1 defective

strains

ATM is a conserved PI3 kinase involved in DNA damage checkpoint regulation and telomere

homeostasis. ATM deficiency has been reported to be associated with shorter telomeres, from

yeast to mammalian cells. Moreover, in ATM deficient yeasts, C. elegans and Drosophila, the

last depending on retrotransposon transposition rather than telomerase activity for telomere

maintenance, chromosome fusions have been observed cytologically or through sequencing

of PCR products across chromosomes [72–77]. C. elegans atm-1/ATMmutants are hypersen-

sitive to ionizing radiation (IR) [78, 79]. In addition, atm-1 lines propagated over multiple

generations have been described to display a stochastic him (high incidence of males) pheno-

type, an indicator of meiotic chromosome mis-segregation associated with sex chromosome

to autosome fusions [78, 80]. Investigating mutation rates in atm-1 lines grown for 20 genera-

tions, we observed 2-fold elevated numbers of SVs, predominantly inversions (Figs 2 and

6A). This increased incidence of SVs agrees with previous estimates of mutation rates in atm-
1mutants which were based on scoring the number of essential mutations in atm-1 back-

grounds [78]. Interestingly, 4 of the 5 atm-1 lines grown for 20 generations carried SVs (with

over 70% (9/11) of all observed SVs) localised in subtelomeric regions (Fig 6B, S5 Fig), unlike

any other DNA repair deficient mutants examined. Most subtelomeric SVs (8/9) could be

classified as complex rearrangements with at least 2 overlapping or adjacent events, often

associated with copy number changes (Fig 6C, S5 and S13 Figs). Moreover, 4/5 complex rear-

rangements involving a single chromosome end displayed a loss of telomere sequences, sug-

gesting a possible end-to-end fusion between homologous chromosomes. Furthermore, we

observed 2 cases of interchromosomal rearrangements between different autosomes with

breakpoints in subtelomeric regions associated with deletion of telomere sequences and copy

number alterations (Fig 6B, S5 and S13 Figs). None of the atm-1 lines carried translocations

or amplifications of the genomic regions termed TALT1 or TALT2, amplified in survivors of

telomerase-deficient C. elegans strains, and considered to be utilized as templates for an alter-

native (telomerase independent) telomere lengthening (ALT) mechanism [81]. Similarly, we

did not observe translocation events associated with atm-1 SVs (S5 and S13 Figs) making

templated telomere maintenance from interstitial telomere sequences buried in the genome

unlikely.
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We speculate that loss of C. elegans atm-1 function could lead to reduced recruitment or

access of telomerase to the shortest telomeres consistent with studies in tel1/ATM mutant

yeast [82–84], thereby leading to telomere loss and chromosome fusions. Access of telomerase

to its telomeric substrate could be inhibited by atm-1 loss due to reduced end resection, a

mechanism also discussed for atm-/- dependent telomere shortening and fusions in mamma-

lian cells [85].
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Fig 6. Signatures and genomic features of mutations in DNA damage checkpoint and apoptosis deficient C. elegans. A. Mutational signatures of

mutants that exhibited statistically significant differences to wild-type mutation rates. The chromosomes on which respective genes are located are

indicated in superscript following each mutant name. Layout as Fig 4A. B. Proportion of SVs with breakpoints into subtelomeric regions across wild-

type and mutants that exhibit elevated SV rates. Dotted lines represent the fraction of variants expected to occur in subtelomeric regions by chance. C.

Examples of subtelomeric structural variants in atm-1mutants. D. Quantification of mutation burden in indicated DNA repair mutants for initial

generations and F20 and F40 generations as shown. Information related to the 528 whole genome sequencing WGS primary-source datasets (56

deposited in this study, 472 deposited in (Suppl Data 1 and Supple Note 1 of [10] can be found in S1 Table).

https://doi.org/10.1371/journal.pone.0250291.g006
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p53 and apoptosis defective strains. In the presence of excessive DNA damage, cells can

trigger the p53 pathway to activate their apoptotic demise. CED-3 and CED-4, orthologs of a

human caspase and the APAF1 protein, are essential for DNA damage induced and develop-

mental apoptosis [86]. In contrast, CEP-1, the C. elegans p53 ortholog is specifically required

for DNA damage induced apoptosis [87, 88]. We did not observe increased mutagenesis in

ced-3, ced-4, or cep-1 defective mutants, indicating no major role of DNA damage induced

apoptosis in preventing mutagenesis under unchallenged growth conditions (S14 Fig). Our

dataset also includes deletions of spindle assembly checkpoint (SAC) genes. The spindle

assembly checkpoint delays anaphase progression until all chromosomes are correctly attached

to the mitotic spindle apparatus, thereby ensuring faithful chromosome segregation [89]. In

addition, SAC has been implicated in DSB repair consistent with bub-3 and san-1 SAC

mutants exhibiting IR sensitivity [90]. Lines deficient for bub-3 and san-1, corresponding to

human BUB3 and BUB1B proteins, respectively [91], did not show increased mutagenesis (Fig

2, S14 Fig).

Having observed distinct mutational patterns in HR deficient mutants, we wanted to test

whether combining HR mutants with apoptosis and/or DNA damage response deficiency

would lead to increased or altered mutagenesis. Increased cep-1/p53 dependent germ cell apo-

ptosis has been reported in a number of HR mutants such as him-6 and brc-1, suggesting that a

higher number of nuclei carry increased or unrepaired DNA damage which might be elimi-

nated by cep-1 dependent apoptosis [22, 40, 92, 93]. Double mutants of him-6 with ced-3 (6

lines), ced-4 (3 lines) or cep-1 (3 lines) did not display changes in mutation rates or spectra

compared to him-6 single mutants apart from 2 out of 3 him-6; ced-4 lines exhibiting a variable

amount of clustering (S14 Fig, Fig 4D). In contrast, 4 cep-1; brc-1 brd-1 lines (but not the 5 brc-
1 brd-1; ced-3 lines) showed an increased rate of mutagenesis compared to brc-1 brd-1 alone

(Fig 6A and 6D). Specifically, cep-1 inactivation exaggerated the mutational features of the brc-
1 brd-1mutant, leading to increased incidence of small deletions and structural variants (Fig

6A). We also observed prominent clustering of base substitutions in all triple mutant lines

averaging to over 20% of mutations being clustered (Fig 4D). Thus, at least for HR deficiency

conferred by brc-1 brd-1, additional cep-1 inactivation increases mutation clustering. Given

that apoptosis deficiency in brc-1 brd-1; ced-3 lines does not result in increased mutagenesis,

we speculate that increased mutagenesis in brc-1 brd-1; cep-1 lines might be associated with a

role of CEP-1, independent of apoptosis regulation. CEP-1 could either trigger the cell-cycle

checkpoint or facilitate more efficient DNA repair.

Discussion

Here, extending on our previous study primarily focused on the effects of genotoxic agents

[10], we systematically catalogued the mutational characteristics of DNA repair deficiencies

across all conserved C. elegansDNA repair and damage response pathways in inbred lines

propagated for up to 40 generations. Our data provide a comprehensive picture of the contri-

butions of various DNA repair and damage response pathways towards genome integrity in an

experimental system under spontaneous, endogenous conditions not challenged by mutagen

exposure. Except for mismatch repair deficiency [11, 47], defined repair deficiencies only lead

to modest effects, with a 2–5 fold increase of mutations in 44% of all strains tested, with notable

examples in almost every pathway. Alkylguanine alkyltransferase, Uracil glycosylase and NER

deficiency are associated with increased acquisition of base changes. TLS mutants rev-3(pol z)

and polh-1(pol η) show elevated numbers of 50–400 bps deletions. Interestingly, HR deficiency

can manifest in different ways. brc-1/Brca1 and rad-51 paralog mutants show elevated muta-

genesis across most types of mutations. Other HR mutants inactivating the MUS-81 and
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SLX-1 nucleases, and the HIM-6/BLM, HELQ-1 and RTEL-1 helicases are associated with in-

creased numbers of SVs. DOG-1 has a unique role in preventing deletions next to G-rich se-

quences, while the HELQ helicase may contribute to faithful replication across secondary DNA

structures such as inverted repeats. RIP-1 appears to avert templated insertion into homeolo-

gous sequences. The ATM-1 checkpoint kinase prevents chromosome end-to-end fusions.

Finally, deficiency of the p53 like gene cep-1 exacerbates mutagenesis caused by HR defects.

Redundancy of DNA repair pathways

It is well established that thousands of DNA lesions occur spontaneously during each cell-cycle

and that the vast majority of DNA lesions are repaired. Thus, the absence of significant muta-

genic effects in the majority of genotypes tested underpins a high level of redundancy within

and among different DNA repair pathways. Moreover, it may require the combined deficiency

of multiple DNA repair pathways to trigger excessive mutagenesis in the germline. Such rea-

soning is in line with our recent whole genome analyses showing that multiple pathways act in

concert to repair DNA lesions caused by the exposure to known genotoxins, with deficiencies

of different pathways potentially leading to increased mutagenesis and/or altered mutagenic

signatures [10]. Equally, latent defects such as those caused by the deletion of the non-essential

polymerase subunit pole-4, only become apparent in conjunction with a DNA repair defi-

ciency [11]. While pole-4 alone does not cause increased mutagenesis, combining this mutant

with MMR causes mutagenesis beyond what is observed upon MMR alone [11]. Many cases of

DNA repair pathway redundancies have been described, for instance, simultaneously defective

TLS, NER, and MMEJ renders C. elegans sensitive to normal levels of daylight [94].

In contrast to a recent large-scale mutation accumulation screen in budding yeast [47], we

did not observe widespread copy number changes in our analysis, likely because most such

changes are incompatible with viability and fertility of a multicellular organism such as C. ele-
gans. It is possible that nematodes suffering from gross chromosomal alterations are lost dur-

ing propagation across generations. However, using our experimental set-up, we were

previously able to detect instances of severe chromosomal rearrangements, including complex

chromosome fusion events that contain scars indicative of breakage-fusion-bridge cycles and

chromothripsis [12]. Nevertheless, it is likely that we underestimate mutation rates, especially

in strains that could not be propagated for 40 generations, namely those defective for the

RTEL-1 helicase and the SMC-5 and SMC-6 cohesion proteins.

Mechanistic insights

Our detailed characterisation of mutation rates, mutational signatures and localised mutation

features, combined with the known enzymology of many repair enzymes, provides mechanis-

tic insights: Our data confirm the specific role of the DOG-1/FANCJ helicase in unwinding G-

quadruplex forming sequences [95], and we show that this feature is unique among the heli-

case mutants we analysed. We also reveal a specific role of the HELQ-1 helicase frequently in

the context of repetitive sequences such as inverted repeats. At present, we can only speculate

how these tandem duplications might arise. It is likely that the genesis of TDs involves micro-

homology-mediated break-induced replication. Inverted repeats may form secondary stem-

loop structures that impede replication fork progression (Fig 5C, S12 Fig). In the case of the

presence of a stem-loop structure in the DNA ahead of a replication fork, stalling could occur

during the attempt to unwind the secondary DNA structure. The replication machinery may

re-initiate at a downstream template, resulting in a duplicated region, before successfully repli-

cating through the stem loop structure in a second attempt. In such a scenario, tandem dupli-

cations would always occur upstream of the inverted repeat (Fig 5C, S2 Table). Alternatively,
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an inverted repeat could more readily adopt a stem loop structure in the extended single-

stranded region of the lagging strand, which is particularly prone to form secondary structures

(Fig 5C, S12 Fig). Such stem loop structures would be prime substrates for HELQ, which has

been shown to bind to single-stranded DNA and act as a 3’ to 5’ helicase, thus facilitating the

dissolution of the stem loop [96]. In the absence of HELQ activity, these stem loops could be

recognised by a nuclease (S12 Fig) and a resulting single-strand break might facilitate the inva-

sion into the freshly replicated leading strand DNA and prime break-induced replication.

Recapturing the original template (S12 Fig, step 3) after break-induced replication would

restore the fork, resulting in a tandem duplication in only one of the two chromatids (S12 Fig).

Crucially, the position of the nucleolytic cut, upstream, downstream or within the inverted

repeat, and the position at which invasion into the template strand occurs, would determine

the breakpoint of the tandem duplication.

In summary, our data suggest that the DNA helicases HELQ-1 and DOG-1 are required to

facilitate replication fork passage through distinct secondary structures (Fig 5B and 5C). While

DOG-1 is needed for the passage through G-rich structures [65], HELQ-1 may help to over-

come stem loop structures, possibly on the lagging strand.

Furthermore, cases of unique gene conversion events into homeologous sequences in rip-1
mutants support a role of RAD-51 paralogs in preventing homeologous recombination. This is

in line with biochemical activity of the RFS-1 RIP-1 paralog complex in remodelling presynap-

tic RAD-51-containing DNA filaments to facilitate strand invasion for recombinational repair

[31]. Finally, we provide evidence that the ATM-1 checkpoint kinase has a specific role in pro-

tecting sub-telomeric repeats from DSBs and preventing deletions, inversions and chromo-

some fusions.

Based on their mutational signatures, strains defective for homologous recombination can

be broadly grouped into two classes. First, BRC-1 and RAD-51 paralog mutants show elevated

numbers of point mutations, as well as increased numbers of small deletions, and structural

variants. A similar pattern was observed in a study of HR knockouts in chicken DT40 cell lines

[25]. We suspect that increased point mutations might be a scar indicative of error prone

translesion synthesis, necessary when damaged bases are neither repaired by BER and NER

nor by replication fork reversal which is linked to recombinational repair [97]. Point muta-

tions and small deletions also occur when HR is replaced by more error-prone NHEJ or

MMEJ pathways, the latter being associated with the occurrence of small deletions in human

BRCA1 mutants [28]. Conversely, deficiencies of other HR proteins, like SLX-1 and MUS-81,

and helicases including HIM-6, RTEL-1 and HELQ-1, are associated with a specific increase of

SVs. We speculate that these proteins may not have a role in HR pathways directly linked with

DNA replication (see below).

Nature of germ cell divisions and mutagenesis

It is important to keep in mind that germ cell mutagenesis might occur at different stages of

the C. elegans life cycle. The nature of germ cell divisions is fundamentally different across var-

ious developmental stages. During the invariant embryonic development of C. elegans, the

germ cell lineage is defined by 3 asymmetric cell divisions, and from the first zygotic cell divi-

sion onwards, a single posterior daughter cell always defines the germ line, which finally splits

as a part of the 4th germ cell division into the two founder cells [98]. Starting from the L1 larval

stage, each of these founders within a timeframe of three days expands to form one of the two

gonads comprising ~1000 germ cells [98]. Embryonic germ cell divisions occur very rapidly

within a timeframe of less than 20 minutes, and cells are largely refractory to DNA damage

checkpoints. Evidence exists that translesion polymerases are particularly important during
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this stage [99, 100]. The first cell-cycle in developing germ lines occurs after an extended

period of transcriptional quiescence, and synchronized transcriptional onset appears particu-

larly challenging for genome integrity [101, 102], all the more so that global transcriptional

induction in these cells required topoisomerase II induced DNA double strand breakage

which has to be mended [101]. In contrast, germ cells residing in the adult germ line are sub-

ject to cell-cycle and apoptosis checkpoints, and take an excess of 10 hours to complete [86]. It

appears possible that the increased number of mutations observed in cep-1 brc-1 double

mutants reflects a role of the CEP-1 p53 like protein in preventing excessive mutagenesis.

CEP-1 is expressed in mitotically dividing germ cells, as well as in late pachytene where late

stages of meiotic recombination occur. Given that we did not observe comparable mutagenesis

in brc-1 and apoptosis defective double mutants, apoptosis being restricted to pachytene cells,

we speculate that mutagenesis might reflect a role of CEP-1 in mitotically dividing germ cells,

possibly affecting the cell-cycle checkpoint or DNA damage response. Finally, it is reasonable

to suggest that many lesions we observe to accumulate in our transgenerational set-up occur in

germ cells, especially during meiosis. Indeed, it appears plausible that many SVs might be asso-

ciated with meiotic recombination. A large excess of DSBs are generated by the SPO-11 nucle-

ase during meiosis, and typically only one DSB per chromosome pair matures into a crossover

to facilitate the exchange of genetic information between maternal and paternal chromosomes

[4]. Many SVs we observed in HR mutants, particularly those that did not demonstrate an

excessive accumulation of point mutations, likely result from faulty recombinational events

during meiosis: For instance, the SLX-1 and MUS-81 nucleases, and the HIM-6 helicase con-

tribute to the resolution of meiotic Holliday junction intermediates [34, 103, 104]. In contrast,

BRC-1 and the SMC-5/6 complex are implicated in the repair of the excess meiotic DSBs not

engaged in crossover recombination [33].All in all, we provide a comprehensive view of how

the DNA repair and damage response machinery acts to preserve genome integrity over gener-

ations. Even in the absence of strong exogeneous genotoxins, multiple DNA repair pathways

are required to mend endogenous DNA damage. In wild-type, background mutagenesis leads

to a relatively uniform mutation pattern. A similar flat mutational signature has been observed

in the human germline and in somatic tissues [6, 9]. It is tempting to assume that a diverse set

of DNA repair processes is also constantly operating in human germ and somatic cells during

normal proliferation to ensure a highest possible level of genomic integrity, resulting in a flat

residual mutational signature. It will be interesting to extend our studies to human inherited

conditions, where defective DNA repair is associated with progeria, developmental defects,

microcephaly, spinocerebellar ataxia, and cancer. Studying both experimental human cell

models and patient samples will allow testing if increased mutagenesis occurs and if certain

mutational features correlate with disease phenotypes.

Materials and methods

C. elegans strains, propagation and maintenance

All C. elegans strains used in this study, newly and previously generated [10–12] (S1 Table)

were backcrossed 6 times against the wild-type N2 Bristol reference strain TG1813 [10–12],

(Fig 1A). The majority of strains were clonally propagated for 20 or 40 generations as

described previously [10]. rtel-1, smc-5, smc-6 lines were grown for 5 generations as these lines

tended to become sterile when grown for more generations (S1 Table for number of lines and

generations per genotype). As described in detail [10] 5–10 single L4 stage hermaphrodites

(F1s) were randomly chosen for each genotype and transferred to individual 1× NGM plates

seeded with OP50 bacteria. Every 3–4 days, 1 single L4 hermaphrodite was randomly chosen

among the progeny per plate and individually propagated further, a process repeated until the
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indicated generation (F5, F20 and F40). Once final generation hermaphrodites had produced

clonal progeny 5 lines were transferred to 9 cm 3× NGM plates and allowed to reach starva-

tion. Mixed stage worms (the majority of which two generations the final transferred L4) were

washed off plates, washed 3× in M9 medium, pelleted and frozen in liquid nitrogen [10].

Genomic DNA was isolated from three samples using the Invitrogen ChargeSwitch1 gDNA

Mini Tissue Kit (Thermo Fisher Scientific, CS11204) [12].

Variant analysis

The relevant procedures are described in detail [10]. In summary, DNA sequencing was per-

formed using Illumina HiSeq 2000 and 10X Genomics short reads sequencing platforms at

100 bp paired-end, with a mean coverage of 50x. The resulting reads were then put through

Sanger Cancer IT Pipeline, including alignment with BWA [105–108] against WBcel235.74.

dna.toplevel.fa as the reference genome (http://ftp.ensembl.org/pub/release-74/fasta/

caenorhabditis_elegans/dna/), CaVEMan for base substitution calling [105–107], Pindel for

indel calling [105, 106]. Structural variants were called manually using DELLY [105] for calling

structural variants and deletions/duplications longer than 400 bps. All variant calling proce-

dures for each sample used a dedicated P0 sample from the same genotype group, or one wild-

type P0 sample as a control (S1 Table).

Resulting variants were filtered based on the site coverage, number and orientation of the

reads, supporting the variant in the test and control samples, overlap with other variants (rele-

vant for substitutions and indels in homopolymer tracks), and a panel of 6 wild-type samples

(for more detailed filtering description, see [10, 11]). In addition, we filtered out the recurrent

variants between unrelated samples to ensure the absence of technical artifacts. The variants in

samples with generation higher than 1 were filtered against all the P0 and F1 line samples of

the same genotype. Mutations were classified based on their size and context: base substitu-

tions were classified into single base substitutions, further split into 96 types by mutation type

(C>A, C>G, C>T, T>A, T>C, T>G), and trinucleotide context based on pyrimidine refer-

ence, di- and multi-nucleotide variants; indels were classified based on event type (deletion,

insertion, or complex indel), local context (whether it falls into a repetitive region, only for

events smaller than 5 bp), and size (1bp, 2–5 bp, 5–50 bp, 50–400 bp); and structural variants

were classified into deletions, tandem duplications, inversions, intra- and interchromosomal

translocations, foldbacks or complex events based on the breakpoint orientation, and proxim-

ity (for more details, see [10]). Sample information and their corresponding ENA accession

codes are listed in S1 Table. Filtered variant sets for the samples already published [10] are

available in the supplementary data of the respective publication. Filtered variants of a further

31 samples analysed in this study are provided in S1 File.

Mutation rates and mutational signatures calculations

Total mutation rates, as well as the rates of base substitutions, indels and structural variants,

for each genotype were expressed in mutations acquired per generation and were estimated

using additive non-negative Poisson regression using the samples with generation higher than

1. Every sample i, i = 1,. . .N out of N = 528 was assigned a number of mutations of the category

of interest, Yi 2 N [ f0g. For a vector of mutation counts across all samples Y, Y ¼ fYig
N
i¼1

,

we calculated the mutation rates per generation for each genotype using the following model:

Y � PoissonðlÞ; l ¼ g � G � m;

where g 2 RN
þ

is the adjusted number of generations which takes into account the 25% chances

of a heterozygous mutation to be lost or to become fixed [12], G2MatN×K({0,1}) is a binary
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matrix indicating the genotype of each sample, and m 2 RK
þ

is a non-negative vector of muta-

tion rates per genotype, with K = 62 being the number of genotypes analysed.

To calculate the mutational signatures, which consisted of mutation rates across all R = 119

mutation types (96 single base substitutions, 2 types of multi-nucleotide substitutions, 14 types

of indels and 7 types of structural variants), we used a negative binomial model to account for

a higher variance compared to the mean in individual counts and a high amount of zero val-

ues. For a matrix of counts Y2MatN×R(N[{0}), the matrix of signatures S2MatR×K(R+[{0})

was calculated using the following model (where ST denotes a transposed matrix S):

Y � NegativeBinomialðw; �Þ; w ¼ g � G � ST; � ¼ 100:

The parameter ϕ = 100 was chosen empirically based on the estimations from the data, and

suggests a slight deviation from Poisson model towards higher variance. Signatures were estimated

using the log-normal prior Sij~logN(0,σ2) with a fixed parameter σ2 estimated from the data.

The estimates of the posterior means for total mutation rates in each genotype, as well as

the mutation rates per type/class, were obtained using Hamiltonian Monte Carlo sampling

procedure with at least 1000 warm-up and 1000 post warm-up samples [109]. As these esti-

mates were assumed to be log-normally distributed, mutation rates in DNA repair deficient

genotypes were compared to the respective entity for wild-type by testing whether a difference

between their logarithms followed a normal distribution, or, equivalently, if their squared log

ratio followed a chi-squared distribution. Resulting two-sided p-values were corrected for mul-

tiple testing across all genotypes using the Benjamini-Hochberg procedure [110]. Mutation

rates per base pair per cell division were calculated assuming 15 cell divisions per generation

and 2 copies of the 100,272,607 bp long nuclear genome.

Analysis of repetitive regions and G4-prone sequences

Genome-wide G4-prone sequences for C. elegans [68], and repetitive regions as deposited in

Repbase (www.girinst.org/downloads/repeatmaps/C.Elegans) were used to determine the

association of SVs with specific genomic regions [111]. For each SV, 60 bp regions around the

breakpoints were overlapped with the location of G4-prone and repetitive regions. Only

unique variants were used to calculate the associated proportions for each genotype. Propor-

tions expected by chance were estimated as the ratios between the sums of all regions of inter-

est, and C. elegans genome size.

Relationship to replication directionality

Directionality of replication was determined using Okazaki fragment sequencing from [112]

performed on different developmental stages of C. elegans. To identify the directions of repli-

cation across the genome, we split the genome in 100 bp bins and calculated the fractions of

Okazaki fragment reads on the minus strand within each bin for each of the 6 samples analysed

in the study:

tlj ¼
tlj� � t

l
jþ

tlj� þ tljþ
;

where j = 1. . .,6 denotes the sample index, and l denotes the index of the bin. The bins where

the average across samples was greater than its standard deviation, i.e. jmeanjðtljÞj > 2 � sdjðtljÞ,
were assigned a “+” direction (or called right-replicating) ifmeanjðtljÞ > 0, and a “-” direction

(or called left-replicating regions) ifmeanjðtljÞ < 0. The bins where the standard deviation of
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the fraction of minus strand Okazaki fragment reads was greater than its average

(jmeanjðtljÞj < 2 � sdjðtljÞ) were considered as having an ambiguous replication direction. In

total, we inferred the direction of replication for 45% of the genome.

Analysis of clustered mutations

Clustering of mutations was assessed using the start points of all base substitutions and indels

across samples of the same genotype and generation. Clustered status was assigned based on a

sliding window of 1000 bp. Estimates of the proportion of clustered mutations were obtained

from a linear model using samples with generation higher than 1 in genetic backgrounds with

>3 such samples: Proportion_clustered ~ rates + ε, ε ~ N(0,σ2), and all DNA repair deficient

backgrounds were compared to that in wild-type by the following Z test: Z ¼ rg � rwtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEðrg Þ

2þSEðrwtÞ
2

p

[113], where rg denotes the rate for a DNA repair deficient genotype g. False discovery rate

among the resulting p-values was corrected for multiple testing using Benjamini-Hochberg

procedure [110].

Microhomologies at SV and indel breakpoints

Microhomologies (MH) at the breakpoints of SVs and indels were assessed by measuring the

lengths of precise alignments around each breakpoint, calculated as a sum of perfect alignment

lengths between the two 30 bp regions upstream, and two 30 bp regions downstream from the

breakpoint sites. Only unique SVs and indels were used to calculate the proportions of variants

with MH for each genotype.

Supporting information

S1 Fig. Summary of mutations acquired in the screen. Total number of mutations (substitu-

tions in black, indels in green, and structural variants in purple) per sample across wild-type

and DNA repair mutant lines. The black line denotes the median number of mutations for

each mutation class across all experiments.

(EPS)

S2 Fig. Mutational signatures and distribution of mutations in DR and BER deficient

mutants. A. Mutational signatures of all tested DR and BER mutants, shown as numbers of

mutations per generation. Bold coloured bars below each mutation profile indicate mutation

types for which the sum across individual classes is different from wild-type. Three stars indi-

cate genotypes with significantly different rates of substitutions, indels or SVs compared to

wild-type with FDR< 5%. B. Distribution of mutations across chromosomes for DR and BER

deficient samples. Only agt-2 shows a significant degree of mutation clustering. The pink and

orange shaded regions in parp-1 and parp-2 samples, respectively, indicate the location and

extent of observed structural variants (pink—TD (tandem duplication); orange—Fold (fold-

back duplication)).

(EPS)

S3 Fig. Mutational signatures and distribution of mutations in NER deficient mutants. A.

Mutational signatures of all tested NER mutants displayed as numbers of mutations per gener-

ation. Bright bars denote individual mutation classes for which mutation numbers differ sig-

nificantly from wild-type. Bold coloured lines below each mutation profile indicate a wider

range of mutation types for which total mutation numbers are different from wild-type. Three

stars indicate genotypes with significantly different rates of substitutions, indels or SVs com-

pared to wild-type (FDR < 5%). B. Comparison between the humanised version of the
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combined mutational spectrum across all NER deficient C. elegans samples and COSMIC sig-

natures SBS5 and SBS8 previously associated with NER deficiency (cosine similarity scores

0.64 and 0.56, respectively). No other COSMIC SBS signatures showed significant similarity to

the C. elegansNER spectrum.

(EPS)

S4 Fig. Mutational signatures and characteristics of mutagenesis in DSBR mutants. A.

Mutational signatures of all tested DSBR mutants displayed as numbers of mutations per gen-

eration. Bright bars denote individual mutation classes for which mutation numbers differ sig-

nificantly from wild-type. Bold coloured lines below each mutation profile indicate a wider

range of mutation types for which total mutation numbers are different from wild-type. Three

stars indicate genotypes with significantly different rates of substitutions, indels or SVs com-

pared to wild-type (FDR < 5%). B. Proportion of SVs and indels with breakpoint microho-

mology across DSBR mutants. C. Distribution of microhomology sizes at indel and SV

breakpoints across DSBR mutants. D. Proportion of SVs with breakpoints in repetitive regions

across wild-type and genotypes with elevated SV rates. Dotted lines represent the fraction of

variants expected to arise in repetitive regions by chance.

(EPS)

S5 Fig. Features of structural variants in wild-type, atm-1, brc-1 brd-1, and helq-1 mutants.

The number of lines grown for both F20 and/or F40 generations is indicated below each geno-

type. The presence or absence of repetitive or G4-forming sequences at breakpoints of SVs is

indicated by a plus ‘+’ ‘or minus ‘-’, respectively. A single minus sign ‘-’ indicates that neither

of the two breakpoints of the SV occurs in the indicated sequence context. ‘+/-’ indicates repet-

itive or G4-forming sequences at the left but not the right breakpoint (consistent with the

direction on the reference genome chromosome), and ‘-/+’ indicates that such sequences only

occur at the right breakpoint. The size and nature of SVs is shown on a log scale on the right.

SV are classed into interchromosomal rearrangements (INTCHR), large deletions (DEL), tan-

dem duplications (TD), and inversions (INV). Details on CD Sample IDs and their respective

European Nucleotide Archive (ENA) accession numbers are available in the sample descrip-

tion of S1 Table.

(EPS)

S6 Fig. Features of structural variants in wild-type, rip-1, rfs-1, smc-5, and smc-6 HR

mutants. The number of lines grown for both F20 and/or F40 generations is indicated below

each genotype. The presence or absence of repetitive or G4-forming sequences at breakpoints

of SVs is indicated by a plus ‘+’ ‘or minus ‘-’, respectively. A single minus sign ‘-’ indicates that

neither of the two breakpoints of the SV occurs in the indicated sequence context. ‘+/-’ indi-

cates repetitive or G4-forming sequences at the left but not the right breakpoint (consistent

with the direction on the reference genome chromosome), and ‘-/+’ indicates that such

sequences only occur at the right breakpoint. The size and nature of SVs is shown on a log

scale on the right. SV are classed into interchromosomal rearrangements (INTCHR), large

deletions (DEL), tandem duplications (TD), and inversions (INV). Details on CD Sample IDs

and their respective ENA accession numbers are available in the sample description of S1

Table.

(EPS)

S7 Fig. Translocations in rip-1 mutants. Visual representation of the 3 duplications/translo-

cation type events observed in two rip-1 F40 lines. CD numbers reflect the European Nucleo-

tide Archive designation of sequenced samples. Translocations (TRLS) are shown using the

wild-type genomic region as reference, nucleotides demarking key features, such as the
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position of the translocation, the donor sequence and the deletion in the acceptor locus being

indicated. In the respective lower panes the level of sequence homology between donor and

acceptor loci is indicated. Green arrows indicate tandem duplication-like (TD-like) break-

points, blue arrows deletion-like (DEL-like) breakpoints.

(EPS)

S8 Fig. Features of structural variants in wild-type, mus-81, slx-1, and rtel-1 HR mutants.

The number of lines grown for both F20 and/or F40 generations is indicated below each geno-

type. The presence or absence of repetitive or G4-forming sequences at breakpoints of SVs is

indicated by a plus ‘+’ ‘or minus ‘-’, respectively. A single minus sign ‘-’ indicates that neither

of the two breakpoints of the SV occurs in the indicated sequence context. ‘+/-’ indicates repet-

itive or G4-forming sequences at the left but not the right breakpoint (consistent with the

direction on the reference genome chromosome), and ‘-/+’ indicates that such sequences only

occur at the right breakpoint. The size and nature of SVs is shown on a log scale on the right.

SV are classed into interchromosomal rearrangements (INTCHR), large deletions (DEL), tan-

dem duplications (TD), and inversions (INV). Details on CD Sample IDs and their respective

ENA accession numbers are available in the sample description of S1 Table.

(EPS)

S9 Fig. Features of structural variants in wild-type, him-6, wrn-1, and dog-1 HR mutants.

The number of lines grown for both F20 and/or F40 generations is indicated below each geno-

type. The presence or absence of repetitive or G4-forming sequences at breakpoints of SVs is

indicated by a plus ‘+’ ‘or minus ‘-’, respectively. A single minus sign ‘-’ indicates that neither

of the two breakpoints of the SV occurs in the indicated sequence context. ‘+/-’ indicates repet-

itive or G4-forming sequences at the left but not the right breakpoint (consistent with the

direction on the reference genome chromosome), and ‘-/+’ indicates that such sequences only

occur at the right breakpoint. The size and nature of SVs is shown on a log scale on the right.

SV are classed into interchromosomal rearrangements (INTCHR), large deletions (DEL), tan-

dem duplications (TD), and inversions (INV). Details on CD Sample IDs and their respective

ENA accession numbers are available in the sample description of S1 Table.

(EPS)

S10 Fig. Mutational signatures and characteristics of mutagenesis in TLS mutants. A.

Mutational signatures of all tested TLS mutants displayed in numbers of mutations per genera-

tion. Bright bars denote individual mutation classes for which numbers differ significantly

from wild-type. Bold coloured lines below each mutation profile indicate a wider range of

mutation types for which total mutation numbers are different from wild-type. Three stars

indicate genotypes with significantly different rates of substitutions, indels or SVs compared to

wild-type (FDR< 5%).

(EPS)

S11 Fig. Mutational signatures and characteristics of mutagenesis in DNA crosslink repair

mutants. A. Mutational signatures of tested DNA crosslink repair mutants displayed in num-

bers of mutations per generation. Bright bars denote individual mutation classes for which

numbers differ significantly from wild-type. bold coloured bars below each mutation profile

indicate a wider range of mutation types for which the total numbers of mutations are different

from wild-type. Three stars indicate genotypes with significantly different rates of substitu-

tions, indels or SVs compared to wild-type (FDR < 5%). B. Distribution of mutations across

11 samples of F20 dog-1 helicase deficient lines. Over 60% of variants occur in G4-forming

regions (large symbols).

(EPS)
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S12 Fig. Possible mechanism for inducing tandem duplications in loci containing inverted

repeat sequences. Step-wise representation of a possible mechanism leading to tandem dupli-

cations (TDs) in helq-1mutants. Inverted sequences are depicted by red lines with arrows indi-

cating directionality. Replication forks are shown as splayed structures with lagging strand

discontinuity indicated by arrows with dotted lines. Scissors indicate a putative endonuclease

cleavage site.

(EPS)

S13 Fig. Telomere proximal structural variants observed in F20 generation atm-1 mutants.

Structural variants in telomere proximal regions are shown for the indicated atm-1 F20 lines

(S1 Table) with their chromosomal locations. Individual structural variants are coloured based

on their classification as duplications (DUP), deletions (DEL), inversion (INV), and interchro-

mosomal rearrangement (BND, breakends) with vertical lines denoting breakpoint locations

and horizontal lines spanning the regions between related breakpoints. Black dots represent

the coverage in bins of 50 bp or 100 bp (for regions above 20 kb) adjusted for the coverage in

the corresponding control sample and indicate copy number.

(EPS)

S14 Fig. Mutational signatures and characteristics of mutagenesis in checkpoint and apo-

ptosis mutants. Mutational signatures of the indicated genotypes are displayed in numbers of

mutations per generation. Bright bars denote individual mutation classes for which the num-

bers differ significantly from wild-type. Bold coloured bars below each mutation profile indi-

cate a wider range of mutation types in which the total number of mutations is different from

wild-type. Three stars indicate genotypes with significantly different rates of substitutions,

indels or SVs compared to wild-type (FDR < 5%).

(EPS)

S1 Table. Details of C. elegans strains used in and sequencing samples from this study.

(XLSX)

S2 Table. Analysis of tandem duplications in helq-1 mutants and their correlation with

inverted repeat sequences.

(XLSX)
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(DOCX)
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