File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher


Yoon, Heein
Advanced Circuits and Electronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

A 76fs rms Jitter and -40dBc Integrated-Phase-Noise 28-to-31GHz Frequency Synthesizer Based on Digital Sub-Sampling PLL Using Optimally Spaced Voltage Comparators and Background Loop-Gain Optimization

Kim, JuyeopYoon, HeeinLim, YounghyunLee, YongsunCho, YoonseoSeong, TaehoChoi, Jaehyouk
Issued Date
IEEE International Solid-State Circuits Conference, pp.258 - 260
The generation of mm-wave (mmW) signals that have ultra-low phase noise (PN) is very important for the design of RF transceivers (TRXs) for high-data-rate 5G systems. Direct-RF-sampling TRXs also require high-frequency clock signals, having extremely low integrated PN (IPN) [1]. To satisfy such stringent noise requirements, the rms jitter of mmW-band signals must be reduced to sub-100fs. Recently, a charge-pump (CP) PLL in [1] achieved a very low rms jitter of less than 60fs at 14GHz. However, to suppress the in-band PN of PLL building blocks, that design used a reference clock that had an impractically high frequency, f-{{REF}}, of 500MHz. To avoid the use of such a high f-{{REF}} while minimizing in-band PN, sub-sampling PLLs (SSPLLs) are seen as a promising solution. However, conventional SSPLLs are not suitable for generating mmW-band signals directly, since, as the frequency increases, the capture range of their sampling operation is reduced rapidly, thereby hindering the reliable operation. To extend the capture range, a prescaler can be used after the VCO [2], but it increases the in-band PN and power consumption. Direct-mmW SSPLLs are limited even at suppressing out-of-band PN, since their PN skirt is determined by an mmW VCO that has a relatively low Q. To overcome the problems of analog SSPLLs, such as a large area and a PVT-sensitive loop gain, digital SSPLLs using ADCs to digitize the sampled voltage have been developed recently [3]. However, digital SSPLLs suffer from another problem in that, to reduce the quantization noise (Q-noise) and improve the overall IPN, they must use high-performance ADCs that concurrently have high-sampling frequencies, fine resolutions, and wide dynamic ranges. Thus, they demand high power and occupy larger area.
Institute of Electrical and Electronics Engineers Inc.


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.