File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

전명재

Jeon, Myeongjae
OMNIA
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Streaming Analytics with Adaptive Near-data Processing

Author(s)
Sandur, AtulPark, ChanHoVolos, StavrosAgha, GulJeon, Myeongjae
Issued Date
2022-04-25
DOI
10.1145/3487553.3524858
URI
https://scholarworks.unist.ac.kr/handle/201301/76137
Citation
International World Wide Web Conference
Abstract
Streaming analytics applications need to process massive volumes of data in a timely manner, in domains ranging from datacenter telemetry and geo-distributed log analytics to Internet-of-Things systems. Such applications suffer from significant network transfer costs to transport the data to a stream processor and compute costs to analyze the data in a timely manner. Pushing the computation closer to the data source by partitioning the analytics query is an effective strategy to reduce resource costs for the stream processor. However, the partitioning strategy depends on the nature of resource bottleneck and resource variability that is encountered at the compute resources near the data source. In this paper, we investigate different issues which affect query partitioning strategies. We first study new partitioning techniques within cloud datacenters which operate under constrained compute conditions varying widely across data sources and different time slots. With insights obtained from the study, we suggest several different ways to improve the performance of stream analytics applications operating in different resource environments, by making effective partitioning decisions for a variety of use cases such as geo-distributed streaming analytics.
Publisher
Association for Computing Machinery, Inc

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.