BROWSE

Related Researcher

Author's Photo

Kang, Byoung Heon
Cancer Biology Lab
Research Interests
  • Mitochondrial chaperones, cancer biology, cell death, metabolism, cancer stem cells, cancer therapeutics development

ITEM VIEW & DOWNLOAD

Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90

Cited 61 times inthomson ciCited 56 times inthomson ci
Title
Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90
Author
Kang, Byoung HeonPlescia, JanetSong, Ho YoungMeli, MassimilianoColombo, GiorgioBeebe, KristinScroggins, BradleyNeckers, LenAltieri, Dario C.
Issue Date
2009-03
Publisher
AMER SOC CLINICAL INVESTIGATION INC
Citation
JOURNAL OF CLINICAL INVESTIGATION, v.119, no.3, pp.454 - 464
Abstract
Although therapeutically targeting a single signaling pathway that drives tumor development and/or progression has been effective for a number of cancers, in many cases this approach has not been successful. Targeting networks of signaling pathways, instead of isolated pathways, may overcome this problem, which is probably due to the extreme heterogeneity of human tumors. However, the possibility that such networks may be spatially arranged in specialized subcellular compartments is not often considered in pathway-oriented drug discovery and may influence the design of new agents. Hsp90 is a chaperone protein that controls the folding of proteins in multiple signaling networks that drive tumor development and progression. Here, we report the synthesis and properties of Gamitrinibs, a class of small molecules designed to selectively target Hsp90 in human tumor mitochondria. Gamitrinibs were shown to accumulate in the mitochondria of human tumor cell lines and to inhibit Hsp90 activity by acting as ATPase antagonists. Unlike Hsp90 antagonists not targeted to mitochondria, Gamitrinibs exhibited a "mitochondriotoxic" mechanism of action, causing rapid tumor cell death and inhibiting the growth of xenografted human tumor cell lines in mice. Importantly, Gamitrinibs were not toxic to normal cells or tissues and did not affect Hsp90 homeostasis in cellular compartments other than mitochondria. Therefore, combinatorial drug design, whereby inhibitors of signaling networks are targeted to specific subcellular compartments, may generate effective anticancer drugs with novel mechanisms of action.
URI
https://scholarworks.unist.ac.kr/handle/201301/7091
URL
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=65649128567
DOI
10.1172/JCI37613
ISSN
0021-9738
Appears in Collections:
BIO_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU