File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

안광진

An, Kwangjin
Advanced Nanocatalysis Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

A-site effects of titanate-perovskite (ATiO3)-based catalysts on dehydrogenation of N-heterocyclic molecules

Author(s)
Park, Byung GwanLee, HyeongeonLee, JihyeonNam, EonuBae, Jong-SeongAn, Kwangjin
Issued Date
2024-01
DOI
10.1016/j.cattod.2023.114339
URI
https://scholarworks.unist.ac.kr/handle/201301/65912
Citation
CATALYSIS TODAY, v.425, pp.114339
Abstract
Dehydrogenation reactions in liquid organic hydrogen carrier (LOHC) systems present significant challenges, particularly when aiming for low-temperature operations while ensuring that no hydrogen remains in the sub-strate molecules. Enhancing catalytic performance requires modifying the adsorption behavior of the reactants and products during dehydrogenation. Perovskites have emerged as promising catalyst supports because of their ability to modify the surface chemical properties by manipulating the cations present at the A-and B-sites. This study investigated the effects of A-site cations (Ca, Sr, and Ba) in titanate-type perovskite (ATiO3)-a proto-typical perovskite-on the dehydrogenation activity in LOHC systems. Remarkably, Pd/SrTiO3 exhibited outstanding performance by completely converting octahydro-N-methylindole to N-methylindole and releasing 5.76 wt% hydrogen over 8 h. Additionally, it dehydrogenated dodecahydro-N-ethylcarbazole to N-ethylcarbazole with a hydrogen release of 5.70 wt%. Furthermore, the catalyst demonstrated a stable performance after recy-cling tests for three times without degradation or loss of activity. The chemical state of the catalyst surface was characterized through X-ray photoelectron spectroscopy, H2-temperature programmed reduction, and chemi-sorption using NH3, CO2, and H2. The results revealed that the exceptional dehydrogenation activity of Pd/ SrTiO3 is due to the presence of suitable surface oxygen vacancies and abundant acid-base sites.
Publisher
ELSEVIER
ISSN
0920-5861
Keyword (Author)
Liquid organic hydrogen carrierN -ethylcarbazoleDehydrogenationPerovskiteAcid -base sitesN-methylindole
Keyword
HYDROGEN CARRIERS LOHCSDEPOSITION-PRECIPITATIONOXYGEN VACANCIESSTORAGEADSORPTIONRUTHENIUM

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.