BROWSE

Related Researcher

Author's Photo

Ryu, Jungki
Bio-inspired Functional Materials Lab (BFML)
Research Interests
  • Biomimetics, artificial photosynthesis, biomimetic catalysis, CO2 utilization

ITEM VIEW & DOWNLOAD

Versatile, Stable, and Scalable Gel-Like Aerophobic Surface System (GLASS) for Hydrogen Production

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Versatile, Stable, and Scalable Gel-Like Aerophobic Surface System (GLASS) for Hydrogen Production
Author
Kang, YunseokLee, SeunghyunHan, SeongsooJeon, DasomBae, MisolChoi, YuriLee, Dong WoogRyu, Jungki
Issue Date
2023-09
Publisher
John Wiley & Sons Ltd.
Citation
ADVANCED FUNCTIONAL MATERIALS, pp.2308827
Abstract
Facile removal of adsorbed gas bubbles from electrode surfaces is crucial to realize efficient and stable energy conversion devices based on electrochemical gas evolution reactions. Conventional studies on bubble removal have limited applicability and scalability due to their reliance on complex and energy/time-intensive processes. In this study, a simple and versatile method is reported to fabricate large-area superaerophobic electrodes (up to 100 cm2) for diverse gas evolution reactions using the gel-like aerophobic surface system (GLASS). GLASS electrodes are readily and uniformly fabricated by simple spin-coating and cross-linking of polyallylamine on virtually any kinds of electrodes within 5 min under ambient conditions. Intrinsically hydrophilic gel overlayers with interconnected open pores allow the physical separation of bubble adhesion and catalytic active sites, reducing bubble adhesion strength, and promoting the removal of gas bubbles. As a result, GLASS electrodes exhibit greatly enhanced efficiency and stability for diverse gas evolution reactions, such as hydrogen evolution, hydrazine oxidation, and oxygen evolution reactions. This study provides deeper insights into understanding the effect of the hydrophilic microenvironment on gas evolution reactions and designing practical electrochemical devices.
URI
https://scholarworks.unist.ac.kr/handle/201301/65833
URL
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202308827
DOI
10.1002/adfm.202308827
ISSN
1616-301X
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU