File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박지영

Park, Jiyoung
Molecular Metabolism Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer's disease by enhancing microglial activity

Author(s)
Choi, ChiyeolKim, HyerinOh, JiyoungPark, ChanhoKim, MinKim, Chu-SookPark, Jiyoung
Issued Date
2023-02
DOI
10.26508/lsa.202201556
URI
https://scholarworks.unist.ac.kr/handle/201301/60103
Fulltext
https://www.life-science-alliance.org/content/6/2/e202201556
Citation
LIFE SCIENCE ALLIANCE, v.6, no.2
Abstract
Microglial phagocytosis and clearance are important for the removal of amyloid-β (Aβ) plaques in Alzheimer’s disease (AD). Chronic exposure of microglia to Aβ plaques leads to microglial metabolic dysfunction, and dysregulation of microglia can accelerate the deposition of Aβ plaques and cause learning and memory impairment. Thus, regulating microglial Aβ clearance is crucial for the development of therapeutics for AD-related dementia. Here, Down syndrome critical region 1 (DSCR1) deficiency ameliorated Aβ plaque deposition in the 5xFAD mouse model of AD by altering microglial activity; however, the Aβ synthesis pathway was not affected. DSCR1 deficiency improved spatial learning and memory impairment in 5xFAD mice. Furthermore, DSCR1-deficient microglia exhibited accelerated lysosomal degradation of Aβ after phagocytosis, and BV2 cells with stable knockdown of DSCR1 demonstrated enhanced lysosomal activity. RNA-sequencing analysis showed that the transcriptional signatures associated with responses to IFN-γ were significantly up-regulated in DSCR1-knockdown BV2 cells treated with Aβ. Our data strongly suggest that DSCR1 is a critical mediator of microglial degradation of amyloid plaques and a new potential microglial therapeutic target in AD.
Publisher
LIFE SCIENCE ALLIANCE LLC
ISSN
2575-1077
Keyword
DOWN-SYNDROMEAMYLOID-BETAENDOGENOUS INHIBITORGENE-EXPRESSIONCALCINEURINPROTEINRCAN1DEGRADATIONOVEREXPRESSIONIDENTIFICATION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.