BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Artificial Intelligence, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Multi-Platform LiDAR for Non-Destructive Individual Aboveground Biomass Estimation for Changbai Larch (Larix olgensis Henry) Using a Hierarchical Bayesian Approach

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Multi-Platform LiDAR for Non-Destructive Individual Aboveground Biomass Estimation for Changbai Larch (Larix olgensis Henry) Using a Hierarchical Bayesian Approach
Author
Wang, ManIm, JunghoZhao, YinghuiZhen, Zhen
Issue Date
2022-09
Publisher
MDPI
Citation
REMOTE SENSING, v.14, no.17, pp.4361
Abstract
Individual-tree aboveground biomass (AGB) estimation is vital for precision forestry and still worth exploring using multi-platform LiDAR data for high accuracy and efficiency. Based on the unmanned aerial vehicle and terrestrial LiDAR data, this study explores the feasibility of the individual tree AGB estimation of Changbai larch (Larix olgensis Henry) of eight plots from three different regions in Maoershan Forest Farm of Heilongjiang, China, using nonlinear mixed effect model with hierarchical Bayesian approach. Results showed that the fused LiDAR data estimated the individual tree parameters (i.e., diameter at breast height (DBH), tree height (TH), and crown projection area (CPA)) with high accuracies (all R-2 > 0.9 and relatively low RMSE and rRMSE) using region-based hierarchical cross-section analysis (RHCSA) algorithm. Considering regions as random variables, the nonlinear mixed-effects AGB model with three predictor variables (i.e., DBH, TH, and CPA) performed better than its corresponding nonlinear model. In addition, the hierarchical Bayesian method provided better model-fitting performances and more stable parameter estimates than the classical method (i.e., nonlinear mixed-effect model), especially for small sample sizes (e.g., <50). This methodology (i.e., multi-platform LiDAR data and the hierarchical Bayesian method) provides a potential solution for non-destructive individual-tree AGB modeling with small sample size and high accuracy in both forestry and remote sensing communities.
URI
https://scholarworks.unist.ac.kr/handle/201301/59315
DOI
10.3390/rs14174361
ISSN
2072-4292
Appears in Collections:
UEE_Journal Papers
Files in This Item:
remotesensing-14-04361-v2.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU