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Abstract: Individual-tree aboveground biomass (AGB) estimation is vital for precision forestry and
still worth exploring using multi-platform LiDAR data for high accuracy and efficiency. Based on
the unmanned aerial vehicle and terrestrial LIDAR data, this study explores the feasibility of the
individual tree AGB estimation of Changbai larch (Larix olgensis Henry) of eight plots from three
different regions in Maoershan Forest Farm of Heilongjiang, China, using nonlinear mixed effect
model with hierarchical Bayesian approach. Results showed that the fused LiDAR data estimated
the individual tree parameters (i.e., diameter at breast height (DBH), tree height (TH), and crown
projection area (CPA)) with high accuracies (all RZ>09and relatively low RMSE and rRMSE) using
region-based hierarchical cross-section analysis (RHCSA) algorithm. Considering regions as random
variables, the nonlinear mixed-effects AGB model with three predictor variables (i.e., DBH, TH, and
CPA) performed better than its corresponding nonlinear model. In addition, the hierarchical Bayesian
method provided better model-fitting performances and more stable parameter estimates than the
classical method (i.e., nonlinear mixed-effect model), especially for small sample sizes (e.g., <50).
This methodology (i.e., multi-platform LiDAR data and the hierarchical Bayesian method) provides
a potential solution for non-destructive individual-tree AGB modeling with small sample size and
high accuracy in both forestry and remote sensing communities.
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1. Introduction

Forest aboveground biomass (AGB) serves as the basis for monitoring and accounting
for carbon stock and plays a crucial role in regulating the global carbon balance [1-3].
Accurate and efficient AGB estimation is required for improving estimates of terrestrial
carbon sources and carbon sinks [4]. AGB estimation at the plot level is typically obtained
by aggregating the predicted biomass of individual trees within a plot [5]. Incipiently, de-
structive sampling of trees was required for measuring individual tree AGB, involving tree
felling, component cutting, drying, and weighing [6]. Due to strong correlations between
individual tree structure parameters (e.g., diameter at breast height (DBH) and tree height
(TH)) and individual tree AGB, species-specific allometric equations for various forest
types have been continuously developed and widely applied for estimating individual tree
AGB [7-10]. In recent years, researchers have demonstrated that the shape and size of tree
crowns are usually associated with the properties of photosynthesis and nutrient cycling,
which affect tree growth [11,12]. Adding crown-related structure parameters (e.g., crown
length, crown width, crown volume, and crown projection area) to the AGB model may
increase estimation accuracy [13].
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Traditional ground-based forest inventory is destructive, and difficult to obtain accu-
rate tree height or other crown-related structure parameters due to the limited viewing
angle [14]. Remote sensing-based forest inventory can provide a practical and econom-
ical approach to AGB estimation with the help of the allometries of the individual tree
parameters, such as tree height and crown. Light detection and ranging (LiDAR) is a
non-destructive sensor system that can be used to directly provide three-dimensional (3-D)
measurements [15-17]. The emerging near-surface LiDAR platforms, including terrestrial
laser scanning (TLS), backpack laser scanning (BLS), mobile laser scanning (MLS), and
unmanned aerial vehicle LIDAR (UAV-LiDAR), have shown great potential in forest inven-
tory, especially for the acquisition of individual tree structure parameters over the past two
decades [18-20]. However, LiDAR platforms have varied limitations by platform regarding
data coverage and information captured beneath or above the canopy [21]. Although a tree
allometry and crown architecture database on a global scale has been published in a recent
study [22], UAV-LiDAR can still conveniently and efficiently provide more accurate crown
information than field measurements and ensure the spatial integrity and time consistency
of data but lacks tree trunk information [23,24]. TLS can provide detailed tree trunk infor-
mation, yet the narrow vertical field of view and measurement range may lead to the lack
of upper tree crown information [25]. Although the fusion of multi-platform LiDAR data
presents an opportunity to address the limitations of different LIDAR platforms [26], the
different densities and scanning angles of multi-platform LiDAR may bring the potential
bias for data registration then influence the individual tree parameter estimation. Nowa-
days, the fusion of multi-platform LiDAR data reaches a satisfying registration accuracy
(root-mean-square error (RMSE) < 30 cm) and is insensitive to individual tree segmentation
errors, paving the way for individual parameter estimation [18,21,26,27].

An accurate individual tree segmentation is the prerequisite for individual tree param-
eter estimation. In general, individual tree segmentation algorithms can be divided into
canopy height model (CHM) segmentation and point cloud segmentation (PCS) [28-30]
according to input data. Over the past two decades, various individual tree segmen-
tation algorithms have been developed, such as maximum local filtering [31], region
growing-based methods [16,32], watershed segmentation [33], region-based hierarchical
cross-section analysis (RHCSA) [15], hierarchical region-merging algorithm [17], and com-
parative shortest-path (CSP) algorithm [34]. Thanks to the advances in the algorithms, it is
possible to delineate individual trees under more complex forest conditions (e.g., closed
broadleaf forests and natural secondary forests), especially with the help of LiDAR data
from multiple platforms [35]. Currently, further research is required to effectively integrate
multi-platform LiDAR data and obtain individual tree parameters of high precision with
minimal cost and a suitable algorithm [36].

In addition, to improve the precision of forest attributes estimation, the individual
tree data with a stratified structure, such as different geographical locations, forest types,
site conditions, or forest stages, are often applied in AGB estimation [37,38]. Mixed-
effects models under the frequentist paradigm are the standard approach for analyzing
random variations among different geographical sites or individual trees when estimating
AGB [39,40]. Within- and between-subject variations can be handled in the mixed-effects
modeling framework by specifying local (subject-specific) and global (population-level)
parameters, respectively [41]. However, the uncertainty of parameter estimates suggests
that model parameters are better represented by probability distributions than by fixed
values from the classical method [41,42]. Thus, hierarchical Bayesian approaches provide
an alternative to traditional frequentist paradigm mixed-effects models [43,44].

The main difference between Bayesian and classical statistical methods lies in how they
define the prior knowledge of sample data [45]. The classical statistical approach assumes
model parameters are unknown but fixed constants, whereas the Bayesian approach as-
sumes that the parameters follow some random distribution [44]. Following the widespread
applications of the Markov Chain Monte Carlo (MCMC) method and the rapid develop-
ment of computing technology, the hierarchical Bayesian approach within the Bayesian
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framework has been developed in forest biomass estimation in recent years [1,44,46]. The
hierarchical Bayesian approach could estimate a comprehensive set of equations and yield
realistic assessments of parameter estimation uncertainty [47]. This approach can incorpo-
rate random variations, such as regional variations, into the model fitting procedure as the
NLME in classical statistical methods [48-51].

Before sampling, the parameters will be given a prior distribution, which is a crucial
component of the Bayesian approach. Two priors were introduced in the Bayesian frame-
work: non-informative and informative priors [52,53]. Because important prior knowledge
about the data can be readily included in Bayesian analyses, the Bayesian approach with in-
formative priors tends to perform better than the Bayesian approach with non-informative
priors and the classic statistical approach [4,51]. Therefore, selecting appropriate prior
distributions for all parameters from external knowledge (e.g., reported parameters from
literature or parameter estimation using conventional statistical methods) is critical for
improving model accuracy.

Furthermore, the Bayesian technique benefits from estimating with small sample sizes,
which overcomes the drawback of classical statistical analysis on the sample size of AGB
estimation based on stratified data. For example, Mauricio et al. [44] applied the Bayesian
method to estimate individual tree AGB with six sample trees, yielding a similar performance
to that using a classic statistical method with 40-60 trees. Dimitris-Zianis et al. [54] found
that the model efficiency of the Bayesian approach was superior for AGB estimation using
six individual Hungarian oak (Quercus frainetto Ten.) trees. In recent years, some studies
attempted to combine the Bayesian method with LiDAR data in forestry biomass applications.
For example, Ver Planck et al. [55] demonstrated the applicability and practicality of using
LiDAR data and the hierarchical Bayesian method to estimate forest AGB at the stand level.
Wang et al. [51] established an independent tree AGB model for Qinghai spruce (Picea crassifolia
Kom) using airborne LiDAR data with both hierarchical Bayesian and classical methods.
However, few studies were devoted to applying the hierarchical Bayesian method with
multi-platform LiDAR data to estimate the individual tree AGB with appropriate sample size,
particularly for typical tree species in northeast China.

As commercially valuable timber, larch is widely planted in the mountains of north,
northeast, and southwest China because of its straight shape and high resistance to bending
and cracking [56]. In temperate regions of China, larch forests account for 6.5% of plantation
area and 6.77% of forest stock, dominating the forest ecosystem [11]. Many researchers
predicted the AGB of individual larch trees using allometric equations with measured tree
variables (e.g., DBH, TH). For example, Wang [57] developed linear component biomass
equations for ten tree species, including the Dahurian larch (Larix gmelinii) using Ordinary
Least Square (OLS) regression. Dong et al. [58] developed two additive biomass equations
for three coniferous plantation species (i.e., Korean pine (Pinus koraiensis Sieb. et Zucc.),
larch, and Mongolian pine (Pinus sylvestris var. mongolica)) in northeast China using
the measurement data of DBH and tree height, which had excellent fitting performance
(Ra% = 0.958-0.989). However, it is still worth exploring how to obtain individual-tree
AGB estimation of larch with low cost, non-destructive samples, and high accuracy using
multi-platform LiDAR data and the hierarchical Bayesian method [51].

Therefore, the objective of this study is to investigate the applicability of hierarchical
Bayesian models for non-destructive individual tree AGB estimation for a typical larch
(Changpbai larch (Larix olgensis Henry) belonging to Pinaceae) in northeastern China based
on the fusion of UAV and terrestrial LIDAR data (U-T LiDAR data hereafter). Specifically,
this study was to: (1) estimate individual tree parameters, including DBH, TH, and crown
projection area (CPA), by two individual tree segmentation algorithms (CSP and RHCSA)
based on U-T LiDAR data; (2) establish and compare five commonly used AGB models
of Changbai larch based on estimated individual tree parameters; (3) establish the hierar-
chical Bayesian models with varying sample sizes for individual tree AGB estimation and
compare their performances to the conventional nonlinear mixed-effects model (NLME)
method. This study combines the advantages of the hierarchical Bayesian method and
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multi-platform LiDAR data to provide the forestry remote sensing community with a
solution of non-destructive AGB modeling using small but effective sample sizes.

2. Materials and Methods
2.1. Study Area and Sampling

The study area is located in the Maoershan Experimental Forest Farm, Shangzhi
City, Heilongjiang Province, China, from 127°29'E to 127°44'E and 45°14'N to 45°29'N
(Figure 1a). The slope ranges from 5° to 25°, and the terrain is mountainous, rising from
south to north with an average elevation of about 300 m. This region has a temperate conti-
nental monsoon climate. Maoershan is a typical natural secondary forest in northeastern
China surrounded by various broadleaved trees, such as white birch (Betula platyphylla
Suk.), Mongolia oak (Quercus mongolica Fisch. ex Ledeb.), and Korean aspen (Populus davidi-
ana), and a few coniferous trees, such as Changbai larch (Larix olgensis Henry), Mongolian
pine (Pinus sylvestris var. mongolica Litv.), and Korean pine (Pinus koraiensis Sieb. et Zucc.).

The eight sample plots of 0.09 ha (30 x 30 m) were selected from three larch plantations
regions according to different site conditions and forest stages (Al: middle-age forest; A2:
near-mature forest; A3: mature forest) (Figure 1b). The normalized UAV-LiDAR and TLS
point data of the eight sample plots were shown in Figure 1c.
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Figure 1. The location of study area: (a) Maoershan Experimental Forest Farm in Heilongjiang
Province, PR. China (China Map Examination No. is GS (2019) 1831) and three larch plantations
regions (A1-A3) with varying forest stages; (b) the specific location of eight plots (plot 1-8) in three
regions; (c¢) The normalized UAV-LiDAR and TLS point data of the eight sample plots.

2.2. Data and Preprocessing
2.2.1. LiDAR Data and Preprocessing

UAV-LiDAR data used in this study were acquired in August 2020. The UAV-
borne LiDAR equipment was RIEGL mini VUX-1UAV-LiDAR scanner (Horn, Austria,
https:/ /www.riegl.com/products/unmanned-scanning/riegl-minivux-1luav, accessed on
14 June 2022) carried by a Feima D200 UAV platform (Shenzhen, China, https://www.
feimarobotics.com/en/productDetailD200, accessed on 14 June 2022). All the flights were
designed as crossed transects with 50% swath overlaps at 80 m altitude and 5.0 m/s
speed. Raw UAV-LiDAR data were denoised and then classified into non-ground points
and ground points using the improved progressive triangulated irregular network (TIN)
densification (IPTD) filtering algorithm [59] in the Green Valley International® LiDAR360
software (v 5.0) (Berkeley, CA, USA, https:/ /greenvalleyintl.com/software, accessed on
14 June 2022).

TLS data of eight sample plots were acquired in September 2020 using a Riegl VZ-400i
(RIEGL, Horn, Austria, https:/ /www.riegl.com, accessed on 14 June 2022). In order to
ensure the spatial coverage of each station, 11 to 13 scanning stations were set up for each
plot. TLS data were registered to WGS 84-UTM zone 52N projection coordinate system
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using the real-time kinematic (RTK) global positioning system receiver. The point cloud
data of multiple stations were co-registered and integrated into plot-level point cloud data
using the Riegl RiSCAN PRO software package (v 2.7.1). Due to a large amount of TLS
point cloud data, the point cloud was thinned by an octree-based algorithm [60] in terms
of speed and computational complexity, following noise elimination. Subsequently, the
thinned point clouds were filtered into ground and non-ground points using IPTD filtering
algorithm in LiDAR360 software. The main parameters of the two LiDAR data used in this
study are shown in the Table Al of Appendix A.

2.2.2. Field Inventory Data

In this study, all the trees with a DBH equal or greater than 5 cm in eight plots were
recorded. In total, four individual tree parameters of 370 Changbai larch trees in eight plots
were measured and recorded, including DBH (cm), tree height (TH) (m), tree species, and
location. There were 123, 98, and 149 trees in middle-age, near-mature, and mature forest,
respectively. DBH was measured using a perimeter ruler; tree height was measured using
the Vertex IV ultrasound instrument system, and the location of each tree was recorded
using RTK with positional error estimated to be within 5 cm. The descriptive statistics of
the main variables are presented in Table 1.

Table 1. Descriptive statistics of field measurements (i.e., DBH and TH) and reference AGB of
individual tree used in this study.

. DBH (cm) TH (m) Reference AGB (kg)

Regions  Forest Stages Planting Plot &

Years Number Mean Std Mean Std Mean Std

. 1990 1 61 1953 516 17.78 2.65 152.81 93.41

Al Middle-age forest 1990 2 62 1998 528 1762 295  157.56 89.94
A2 N ; 1985 3 51 2367 7.03 2263 248 337.45 144.17
ear-mature forest 1985 4 47 2873 629 2336 204 401.08 171.83

1978 5 64 2286 543 2112 287 243.75 114.67

A3 M ; 1978 6 32 2861 514 2441 130 410.56 141.23
ature forest 1978 7 28 3025 366 2483 1.01 457.95 114.41

1978 8 25 3297 699 2442 317 546.15 185.02

2.3. Methods

In this study, the preprocessed UAV-LiDAR and TLS data were registered and fused to
create the U-T LiDAR data for comprehensively describing individual tree structure. Firstly,
based on the U-T LiDAR data, two algorithms (CSP and RHCSA) were used to delineate
individual trees and obtain the optimal LiDAR-derived individual tree parameters (i.e.,
DBH, TH, and CPA) based on field inventory data (objective 1). Secondly, five widely used
AGB model forms (model I-V) were selected and compared by NLS and Bayesian approach
based on the reference AGB of individual tree, and the corresponding mixed-effects LIDAR-
AGB model was developed with random effects for different regions to further improve
the model fitting (objective 2). Then, the hierarchical Bayesian and NLME methods were
compared to estimate individual tree AGB with five sample sizes (i.e., 10%, 25%, 50%, 75%,
and 100%) in order to explore the appropriate sample size that could balance between the
estimation accuracy and cost (objective 3). A flowchart of this study is depicted in Figure 2.
Section 2.3.1, Section 2.3.2, Section 2.3.3, and Section 2.3.4 explained the procedure for
objectives 1, 2, and 3, respectively.
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Figure 2. Flowchart of the proposed methodology in this study.

2.3.1. Estimation of Individual Tree Parameters

The UAV-LiDAR and TLS data for each sample plot were coarsely registered based
on the projected coordinate system. Then, the iterative closest point (ICP) algorithm, a
point-based matching method based on minimizing the cumulative distance between two
LiDAR data [26,61], was used to conduct a fine co-registration of the two LiDAR data in
this study. In this study, UAV-LiDAR was set as the reference point cloud for registering
TLS data. After the coarse and fine registration (Figure 3), the UAV-LiDAR and TLS data
for each plot were fused in LIDAR360 software.

icp
algorithm

(b) fine registration

Figure 3. Coarse registration (a) and fine registration (b) of UAV-LiDAR data (blue points) and TLS
(gray points).
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This study used two segmentation algorithms (CSP and RHCSA) to segment individ-
ual trees based on the normalized fused LiDAR (U-T LiDAR) data. The CSP algorithm
proposed by Tao et al. [34] finds seed points of individual trees by recognizing tree bases
and then labels other points by finding the shortest path to the seed points, which has
been directly applied to LiDAR point data [23,62]. In addition, the RHCSA algorithm was
applied to segment individual trees based on the canopy height model (CHM) derived
from the U-T LiDAR data. RHCSA is a one-step individual tree crown delineation (ITCD)
algorithm, which segments individual trees with a few user-defined parameters [15]. The
appropriate cell size of CHM could reduce the errors of segmentation and ensure that
sufficient detail is maintained in the height model [63]. This study employed kriging
interpolation with a pixel size of 0.25 m through trial and error. The smoothed CHM
eliminated the majority of noise and empty sinks, allowing for an accurate interpretation of
tree crowns [64].

The local maxima of height within each tree crown and the projection area of delineated
crowns from the segmentation algorithms were defined as TH and CPA, respectively.
The DBH of individual trees was estimated using a nonlinear least-squares circle fitting
algorithm [65,66]. The position of the treetop was considered to be the tree location. All
of the individual tree parameters (i.e., tree location, DBH, TH, and CPA) were estimated
using LiDAR360 5.0 and ArcGIS 10.4 (ESRI, Redlands, CA, USA) software.

The accuracy assessment of two segmentation algorithms was evaluated based on the
three indices, including recall (r), precision (p), and F-score (F) [30]. The three indices were
calculated using the following equations:

TP

"TTPYEN M
TP

P=Tp¥rpP @)

Foox XP 3)
r+p

where TP (true positive) denotes the number of trees correctly detected, that is, 1:1 matched
trees; FN (false negative) denotes the number of trees that were not detected; and FP (false
positive) denotes the number of trees falsely detected. r indicates the tree segmentation
completeness, p indicates the correctness of the detected trees, and F is the overall accuracy
considering both commission and omission errors. In this study, 1:1 matched trees were
defined as the trees located within 3 m of the reference tree position and had the minimum
differences of DBH from references within the 20% of the average plot value [67].

Based on 1:1 matched trees, the accuracy of DBH and TH were evaluated using the
field measurements. Since two-dimensional parameter CPA is difficult to measure in
the field and no allometric equation is available to estimate CPA for Changbai larch, the
accuracy of CPA was evaluated using the CHM-based manual delineation. The accuracies
of estimated individual tree parameters were assessed by the coefficient of determination
(R?) of the regression between estimated and measured parameters, root-mean-square error
(RMSE), and relative root-mean-square error (rRMSE) of estimated parameters as follows.

R — Y (vi —2%)(%' — 1) — @)
VI~ 702 S - 7)
1 & .
RMSE = |~ Y (yi = )" ®)
i=1
rRMSE = RAjSE x 100% (6)
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where y; is the reference parameters of individual trees, ¥j; is the estimated parameters, v; is
the mean value of the reference parameters, 1j; is the mean value of estimated parameters,
and n is the number of samples.

2.3.2. Establishment of Individual-Tree AGB Model Based on U-T LiDAR

Five common candidate models established with the three optimal individual tree
parameters (DBH, TH, and CPA) were applied as the basic U-T LiDAR-AGB models
(baseline) in this study [21,68]. The five AGB models are listed as follows.

Model1: AGB = a;-DBH" +¢ (7)

Mode Il : AGB = a;-DBH"-TH" + ¢ (8)
Model Il : AGB = a;-DBH™.CPA™ + ¢ ©)
Model IV : AGB = ay-TH"2-CPA™® +¢ (10)
Model V: AGB = a;-DBH".-TH"®.CPA™ +¢ (11)

where DBH denotes the diameter at breast height (cm), TH is tree height (m), CPA presents
tree crown projection (m?), AGB is reference AGB, and ¢ is an error term. The reference
AGB of individual tree in this study was calculated using the additive biomass equations
of larch plantations proposed by Dong et al. [69], shown in Table A2 of Appendix A.

Due to the stratified structure of the data (i.e., sample trees in three regions of different
forest stages, including Al: middle-age forest, A2: near-mature forest, and A3: mature
forest), the NLME approach [70] was used for the basic LIDAR-AGB model in this study. All
parameter combinations were simulated as mixed parameters, with Akaike’s information
criterion (AIC), Bayesian information criterion (BIC), and log-likelihood (LL) serving as
the primary evaluation criteria for the fitting performance. The specific mixed-effects
U-T LiDAR-AGB model form is established based on the basic U-T LiDAR model, with
the mixed-effects model parameters estimated using the maximum likelihood method
(ML) with the nlme function of the nlme library in R software 4.0.3 (New York, NY, USA,
https://mran.microsoft.com/, accessed on 14 June 2022).

2.3.3. Establishment of Hierarchical Bayesian Model

Based on the advantage of the Bayesian method for small sample estimation and the
stratified structure of the data, hierarchical Bayesian models were established. However,
to ensure an adequate sample size, this study selected five sample sizes (samples 1-5)
using stratified random sampling with a proportional allocation. Sample 1-5 was stratified
randomly selected using a proportion of 10%, 25%, 50%, 75%, and 100% in each forest stage
(i.e., Al: middle-age forest, A2: near-mature forest, and A3: mature forest), respectively.

The Bayesian approach is a statistical framework that combines new evidence (data)
with prior distributions of parameter values to derive new probability for various parameter
values [47,71]. It is also suitable for multilevel analysis [72], where the regions (i.e., Al,
A2, and A3) are considered as random variables. The AGB data can be used to estimate
parameter 6 for each region. Let y = (ylj, cees yl-]-) represents the AGB data vector, y;; is the
AGB of the ith tree in the region j; let 6 = (61, 6, 63 ...) represent the vector of parameters
to be estimated. Then 77(6|A) is determined, where A is a hyperparameter vector [73]. The
inference parameter 6 is based on its posterior distribution:

~ pyeA)  f(y|0)-m(B|A)
PO A) = Tt ande ~ T f(y]e)(o]A)o 12)

The prior distribution of 77(6|A) in this study is obtained from the parameters esti-
mated by NLME [73]. The posterior distribution is used for Bayesian statistical inference,
assuming 6 is known, f(y|0) provides the distribution of y, which is considered a likelihood
function when viewed as a function of the parameters.
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For the Bayesian estimation, a burn-in period of 30,000 steps and 330,000 iterations
were used to estimate parameters. The thinning parameter was set to 3 to reduce the
correlation between neighboring iterations. In this study, Bayesian models were developed
using the MCMC procedure in SAS 9.4, and the average running time for each model was
approximately three minutes.

2.3.4. Model Evaluation

The best AGB model was selected by both the classical method and Bayesian method
from the smallest AIC, BIC, and deviance information criterion (DIC) when pooling the data.
Moreover, the stationarity test of Heidelberger-Welch Diagnostics [74,75] was conducted
to test whether the model converged in this study. The DIC is calculated by:

DIC=D+pp (13)

where D is the posterior mean of the deviance (—2 X Log likelihood of the given data and
parameters), and pp is the model complexity, which is summarized by the effective number
of parameters.

The Fit Index (FI) [76,77] and the root mean square error (RMSE) were applied to
compare the Bayesian method with the classical method on different sample sizes. Larger
FI and smaller RMSE values indicate a better model fitting. The FI are calculated by:

n AN2
FI:1_Zi:1(yi_yi)2 (14)
Y (vi — i)

where y;, ; and ¥; represent the observed, estimated, and mean values of AGB, respectively.

3. Results
3.1. Estimation of Individual Tree Parameters

The average F (F-score) value of eight sample plots for the two segmentation algo-
rithms was above 0.90 (Table 2). The CPS algorithm was slightly better than the RHCSA
algorithm for individual tree segmentation (0.92 vs. 0.90). A total of 337 sample trees were
correctly segmented and matched using the CSP algorithm from 370 reference trees. The
RHCSA algorithm, based on CHM for individual tree segmentation, had weaknesses in
detecting small trees: the number of correctly detected trees (TP) of RHCSA was slightly
fewer than the CSP algorithm (327 vs. 337 out of 370).

Table 2. The plot-level accuracy assessment for the two segmentation algorithms based on U-T
LiDAR data.

TP
. * * *
Algorithms r p F (1:1 Matched Trees) FP FN
Csp 0.90 0.94 0.92 337 20 33
RHCSA 0.88 0.93 0.90 327 24 43

Note: * represented the average r, p, and F value of eight sample plots; TP, FP, and FN were the total value
of true positive (1:1 matched trees), false positive, and false negative for eight sample plots, respectively. CSP:
comparative shortest-path algorithm, RHCSA: region hierarchical cross-sectional analysis algorithm.

Table 3 presents that the R? of individual tree parameters are all greater than 0.9, except
the CPA estimated by CSP. It is because that lots of points from shrubs near the ground were
misclassified as tree points by the CSP algorithm, and the CSP algorithm calculated CPA
based on the average crown diameter estimated by the tree points, therefore resulting in
larger estimated canopy diameters and CPA. The RMSE and rRMSE values of TH and CPA
estimated by RHCSA were lower than those estimated by CSP. In addition, the accuracies
of DBH estimated by CSP and RHCSA were very similar (R%: 0.983 vs. 0.990, RMSE: 1.017
vs. 1.024; rRMSE: 4.9 vs. 4.8). To ensure the accuracy of individual tree AGB estimates, we
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applied the individual tree parameters of 327 sample trees based on the RHCSA algorithm
as the predictor variables for the subsequent individual tree AGB estimation.

Table 3. The accuracy assessment of individual tree parameters for the two segmentation algorithms.

Algorithms N Parameters R? RMSE rRMSE (%)
DBH 0.983 1.017 49
CSP 337 TH 0.923 1.494 8.3
CPA 0.527 29.258 607.3
DBH 0.990 1.024 438
RHCSA 327 TH 0.934 1.247 7.3
CPA 0.905 3.874 43.7

Note: N is the number of 1:1 matched trees, DBH presented diameter at breast height (cm), TH presented tree
height (m), CPA presented tree crown projection (m?).

3.2. Establishment of Individual-Tree AGB Model Based on U-T LiDAR

Table 4 shows the fitness statistics of the five widely used AGB models using both
classical and Bayesian approaches in this study. Model V showed the best evaluation
statistics with the smallest AIC (3039.067), BIC (3058.017), and DIC (3032.190) values among
the five models, while Model IV had the worst model performance and even failed the
Heidelberger—Welch Diagnostics test for the stationarity.

Table 4. The fitness statistics of the five widely used AGB models using classical and Bayesian
approaches.

Classical Approach Bayesian Approach
Model No. Model Forms
AlC BIC DIC Stationarity Test
I AGB = a;DBH"™ +¢ 3308.285 3319.655 3297.941 Passed
I AGB = a;DBH2TH" +¢ 3044.183 3059.343 3036.874 Passed
11 AGB = aiDBH"2CPA"™ +¢ 3309.353 3324.513 3307.981 Passed
v AGB = a;TH"2CPA"3 +¢ 3743.494 3758.654 - Failed
\ AGB = ayDBH"2TH"3CPA™ +¢ 3039.067 3058.017 3032.190 Passed

Note: DBH presented diameter at breast height, TH presented tree height, CPA presented crown projection area,
¢ presented error term.

Model V (Equation (11)) with three predictor variables (i.e., DBH, TH, and CPA) was
selected as the basic U-T LIDAR-AGB model due to the best model performance (Table 4).
According to AIC, BIC and LL values of all combinations of parameter and random
effect (i.e.,, Al, A2, A3) (see the Table A3 of Appendix A), mixed-effects U-T LiDAR-AGB
models were established by adding a random effect parameter to a4 based on model V as
Equation (15). The model evaluation statistics of all parameter combinations are shown in
Table Al.

AGBjj = a; DBH? THP CPAI™ ™) 1 ¢ (15)

where a;1—a4 are the parameters of the model, 4; is the random-effect parameter of the ith
region; AGB;;, DBH;j, TH;j, CPA;; and ¢;; are the individual tree AGB (kg), DBH (cm),
TH (m), CPA (m?), and random error term of tree j from the ith region, respectively.

Table 5 shows the fitting goodness of the basic U-T LIDAR-AGB model (model V) using
nonlinear least squares (NLS) and NLME methods. All model parameters were significant,
and the NLME method fitting substantially improved. The FI of the mixed-effects model
was higher than that of the basic model (0.981 vs. 0.979), and RMSE, AIC, and BIC values
decreased. However, there was no significant difference in the standard deviations of the
parameters between the two methods. Both models showed an ideal fitting effect.
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Table 5. Parameter estimates and standard deviations (values in brackets) and fitting goodness of the
basic U-T LiDAR-AGB model (model V) using NLS and NLME methods.

Types Parameters NLS NLME
a 0.024 (0.004) 0.026 (0.004)
. a 1.795 (0.036) 1.807 (0.035)
Fixed effects as 1.128 (0.057) 1.102 (0.060)
a 0.032 (0.012) 0.023 (0.013)
Random effect StdDev(a;) - 0.0053
FI 0.979 0.981
. RMSE(kg) 24.893 24183
Fitting AIC 3039.067 3029.853
BIC 3058.017 3052.593

Note: NLS: nonlinear least squares; NLME: nonlinear mixed effect model.

3.3. Establishment of Hierarchical Bayesian Models with Different Sample Sizes

According to stratified random sampling with proportional allocation, five sample
sizes decreased from 327 (100%) to 34 (10%) trees were applied for hierarchical Bayesian
modeling in this study (see the Table A4 of Appendix A). The basic statistics of individ-
ual tree parameters (DBH, TH, CPA, and AGB) for each sample size are summarized in
Table A4.

The hierarchical Bayesian models were compared to the corresponding NLME models
using different sample sizes. The prior parameter distribution of Bayesian estimation was
obtained from the parameters of NLME estimation. The posterior probability distributions
of the parameters estimated by the Bayesian theory for U-T LiDAR-AGB models are
summarized in Table 6. Although the parameter estimates using the two approaches were
very similar, the standard errors of the estimates obtained by the hierarchical Bayesian
method in all sample sizes were smaller than those obtained by the classical NLME method.
This implies that the Bayesian method provided more stable estimates than the classical
method. Figure 4 compares the parameters estimated by the hierarchical Bayesian and
NLME methods with the 95% confidence intervals based on the five sample sizes. The
hierarchical Bayesian method produced estimates with a narrower 95% confidence interval
than the NLME method for all sample sizes. The parameter estimates were more stable for
smaller sample sizes, especially the sample size of 82, than for larger sample sizes (e.g., 327)
when the hierarchical Bayesian method was applied.

Table 6. Parameter estimates with standard errors/deviations (values in parentheses) and the
accuracy of the U-T LiDAR-AGB model using five sample sizes.

Sample Sizes (Proportions)

Methods Parameters

34 (10%) 82 (25%) 164 (50%) 246 (75%) 327 (100%)
M 0.014 (0.004)  0.028 (0.001)  0.032 (0.005)  0.027 (0.003)  0.025 (0.002)
ap 2.029 (0.051)  1.759 (0.002)  1.790 (0.038)  1.807 (0.012)  1.801 (0.030)
Hierarchical as 1.086 (0.112)  1.087(0.102)  1.105(0.053)  1.084 (0.041)  1.107 (0.036)
Bayesian ay 0.009 (0.020)  0.079 (0.001)  0.033 (0.016)  0.029 (0.010)  0.031 (0.011)

FI 0.987 0.984 0.983 0.981 0.980

RMSE (kg) 14.866 22.317 22.372 24.491 24.863
ay 0.012 (0.006)  0.025 (0.007)  0.030 (0.006)  0.027 (0.005)  0.026 (0.004)
ap 2.029 (0.141)  1.756 (0.069)  1.807 (0.058)  1.808 (0.041)  1.807 (0.035)
NLME as 1.124 (0.185)  1.124(0.107)  1.051 (0.080)  1.083 (0.069)  1.102 (0.060)
ay 0.009 (0.041)  0.078 (0.023)  0.025(0.020)  0.023 (0.015)  0.023 (0.013)

FI 0.987 0.981 0.981 0.980 0.981

RMSE (kg) 21.662 23.856 23.542 25.006 24.146

Note: The values in parentheses presented the standard errors or standard deviation of the parameters estimates
obtained by the hierarchical Bayesian approach or NLME approach, respectively.
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Figure 4. The comparison of the 95% confidence intervals of parameter estimates (a1—a4) estimated
by the hierarchical Bayesian and NLME methods based on the five sample sizes.

Table 6 also confirms that the difference between FI and RMSE between the two
methodologies became obvious with decreasing sample sizes. For example, when pooling
the data (n = 327), the FI and RMSE of the Bayesian method were very similar to that of the
classical method (0.980 vs. 0.981; 24.863 vs. 24.164). When the sample size was reduced
to 34, however, the performance of the Bayesian method was much better than that of the
classical method: the RMSE decreased by 31.4%.

4. Discussion

Although it is a widely used method to estimate individual tree AGB using an allomet-
ric equation based on field inventory data (e.g., DBH, TH), its efficiency and accuracy are
still unsatisfactory, particularly for large-scale forest inventory [78]. This study provided a
potential solution for establishing an efficient model using combined UAV and terrestrial
LiDAR data with an appropriate sample size based on the hierarchical Bayesian method.

4.1. Individual Tree Parameters Estimation Using U-T LiDAR Data

The near-surface LiDAR is a non-destructive technology widely used in forest inven-
tory and AGB estimation in recent years [19,21,51]. However, single platform/single-scan
LiDAR data have limitations; the U-T LiDAR data combines the rich point cloud beneath the
canopy obtained from TLS with middle and upper canopy information from UAV-LiDAR.
U-T LiDAR data could accurately capture tree trunk parameters (e.g., DBH), TH, and crown
structural parameters (e.g., CPA) with a broader viewing angle than field measurements,
resulting in a satisfactory AGB estimation accuracy for individual trees.

The accuracy of individual tree segmentation may significantly impact the acquisition of
individual tree parameters [26]. Based on the U-T LiDAR data, CHM-based and point cloud-
based segmentation algorithms (RHCSA and CSP) were used to segment individual trees in
this study. The average plot-level F-scores (0.90 and 0.92 using RHCSA and CSP, respectively)
were similar but slightly higher than the other studies. For example, Li et al. [30] reported an
average F-score of 0.90 for mixed conifer forests based on the airborne LiDAR data using the
PCS algorithm. Tao et al. [34] reported an average F-score of 0.87 for three forest types (i.e.,
conifers, broadleaf, and mixed) using the CSP algorithm based on terrestrial and mobile LIDAR
data. Similar to the previous studies, compared to the PCS algorithm, the CHM-based methods
(RHCSA in this study) had weaknesses in detecting small trees, especially for high canopy
closure forests [79]. A total of 91.1% and 88.4% of sample trees were correctly segmented and
matched by the CSP and the RHCSA algorithm. However, the CPA estimated using the CSP
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algorithm had much lower accuracy than that of the RHCSA algorithm. This could be because
the CSP is a bottom-up algorithm; points from shrubs near the ground could be misclassified
as sample tree points, resulting in trees with larger estimated canopy diameters. Furthermore,
the CSP algorithm computed the circle area as CPA using the average crown diameter derived
from the point cloud. In contrast, the RHCSA algorithm delineated entire tree crowns using
CHM from a vertical perspective, making it easier to visualize and estimate CPA than CSP.
Due to the similar reasons, the tree height estimated using CSP had a slightly lower accuracy
(R? = 0.923, RMSE = 1.494 m, rRMSE = 8.3%) than that of RHCSA (R? = 0.934, RMSE = 1.247 m,
rRMSE = 7.3%). Little difference was observed in the accuracy of DBH extracted by the
two algorithms. The results demonstrated the potential of applying multi-platform LiDAR
data to derive individual tree parameters for individual tree AGB estimation in lieu of field
measurements to some extent.

4.2. The Hierarchical Bayesian Method in AGB Estimation

With the widespread use of the MCMC algorithm and the advancement of computing
technology, Bayesian-based applications in forestry have become increasingly popular in
recent years [41,46,55]. Although the Bayesian and classical methods in this study showed
a similar trend in the basic LIDAR-AGB model selection (Model V was the best, followed
by Model II, and Model IV was the worst), the Bayesian method is more rigorous (Table 4).
The findings were consistent with that of Fu et al. [21]. However, Wang et al. [51] selected a
basic LIDAR-AGB model with DBH and CPA as predictors (model III in this study) due
to the LiDAR data obtained from a different platform (i.e., airborne) and the method of
estimating individual tree parameters.

The mixed-effects and hierarchical Bayesian models are versatile and applicable for
constructing regional biomass models [1]. Based on the stratified data structure, the NLME
method of the frequentist paradigm and the hierarchical Bayesian method of the Bayesian
paradigm were implemented and compared using regions as the random effect. The hierar-
chical Bayesian model assumes that parameters are defined from prior distributions. In
previous studies [4,80], non-informative priors with enormous or infinite variance were
commonly used, and the parameter estimation was always identical to the frequentist
paradigm. In this study, the prior distribution of the hierarchical Bayesian method was
obtained from the parameters estimated by the classical statistical approach (NLME) ac-
cording to Zhang et al. [81] and Wang et al. [51]. Alternatively, parameter prior information
of some studies was derived from external knowledge (reported parameters from the litera-
ture) (e.g., [1]). The impact of prior information on model fitting should be investigated in
future research. In addition, the parameters estimated by the hierarchical Bayesian method
were more stable than the classical method, with smaller standard errors/deviations and
narrower 95% intervals (Table 6 and Figure 4). That is consistent with the results of Wang
et al. [51]. Based on the evaluation statistics of FI and RMSE, with the decreasing sample
size, the Bayesian method showed obvious advantages (Table 6). For the sample size of 34,
the RMSE was a 31.4% reduction compared to the classical method. This is in agreement
with the findings of Wang and Zapata-Cuartas [44,51].

This study found that the LIDAR-AGB model with the U-T LiDAR-derived individual
tree parameters as predictor variables could achieve better prediction results using the
hierarchical Bayesian method, particularly when the sample size was small (34 trees in this
study). The parameter estimations were more stable, and the model fitting was better than
the classical method. Similarly, Wang et al. [51] estimated the individual tree AGB based on
39 sample trees of Qinghai spruce (Picea crassifolia Kom) using the layered Bayesian method,
achieving a result of R? = 0.8611. Thus, there is great potential for using the hierarchical
Bayesian method with small sample sizes (less than 50) to estimate the individual tree AGB.
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4.3. Limitations

There are still limitations that need to be discussed. First, it should be recognized that
field-estimated AGB is commonly referred to as reference data in remote sensing studies
(e.g., [61,55]) in order to avoid destructive biomass sampling in the field and improve
efficiency. However, the accuracy of field estimates is unknown, indicating that the ‘ground
truth’ of the individual tree-level AGB may have uncertainty [82]. Although both errors due
to tree measurement and the choice of an allometric model are sources of AGB estimation
uncertainty, several pieces of research have revealed that the most significant sources of
error are currently related to the choice of an allometric model [83]. More work should be
devoted to considering these uncertainties derived from remotely sensed data. Second, the
efficacy of TLS data in forest stands with dense canopies is inferior to that of BLS due to
the inconvenient transport of TLS equipment to sample plots or the difficulty in changing
stations in dense forests. In this study, for instance, about ten scanning stations were
set up for each sample plot (30 x 30 m), requiring two personnel to operate for 2-3 h to
complete the TLS data collection of each plot, with an average stand density of 810 trees/ha.
However, BLS may have relatively low accuracy for individual tree parameters due to the
lack of points for the middle and upper parts of trees [27]. In practice, the number of TLS
scanning stations should be adjusted according to study objectives and stand density to
balance efficiency and accuracy. Compared to conventional measurements, combining ULS
and TLS data provides a comprehensive, efficient, and cost-effective method for obtaining
individual tree properties. Moreover, although the hierarchical Bayesian approach has
improved the stability of model parameters compared with the classic NLME method, it
does not show significant advantages in model parameter estimation, especially for large
sample sizes. Therefore, the hierarchical Bayesian method should be applied according to
the study objective and sample size and is still worth further exploration in forestry.

5. Conclusions

This study investigated the applicability of fusing UAV and terrestrial LiDAR data and
the feasibility of hierarchical Bayesian for non-destructive individual tree AGB estimation
of Changpbai larch (Larix olgensis Henry) in northeastern China. When taking the full
advantages of UAV and terrestrial platforms, the U-T LiDAR data estimated the individual
tree parameters (i.e., DBH, TH, and CPA) of Changbai larch with high accuracies (all
R? > 0.9) using RHCSA segmentation algorithm. Considering regions as random variables,
the nonlinear mixed-effects U-T LiDAR-AGB model with three predictor variables (i.e.,
DBH, TH, and CPA) performed better than its corresponding nonlinear model. In addition,
the hierarchical Bayesian method provided better performances and more stable parameter
estimates than the classical method, especially for small sample sizes (e.g., <50). This study
implied that the fused multi-platform LiDAR data combined with the hierarchical Bayesian
method have the potential to improve the accuracy of individual tree AGB estimation,
which provides a non-destructive approach for individual tree AGB modeling with a
small sample size. This methodology of this study (i.e., multi-platform LiDAR data and
the hierarchical Bayesian method) could provide a scientific basis for non-destructive
individual tree AGB modeling with a small sample size and high accuracy in the future.

Author Contributions: Conceptualization, M.W. and Y.Z.; methodology, M.W.; software, M.W.;
validation, M.W.; writing—original draft preparation, M.W.; writing—review and editing, J.I. and
Z.Z; supervision, Y.Z.; project administration, Y.Z. and Z.Z.; funding acquisition, Y.Z. and Z.Z. All
authors have read and agreed to the published version of the manuscript.



Remote Sens. 2022, 14, 4361 15 of 19

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 31870530, the Fundamental Research Funds for the Central Universities (2572020BA05),
and National Forestry and Grassland Data Center- Heilongjiang platform (2005DKA32200-OH). J.
Im was partially supported by the Korea Environment Industry & Technology Institute (KEITT)
through its Urban Ecological Health Promotion Technology Development Project, and funded by the
Korea Ministry of Environment (MOE) (2020002770001). This study was also supported by China
Scholarship Council (CSC-No. 202006605008).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1l. The main parameters of the two LiDAR data used in this study.

Parameters UAV-LiDAR TLS
Sensor RIEGL mini VUX-1UAV RIEGL VZ-400i
Wavelength (nm) 905 1550
Point frequency (Hz) 100 k 1200 k
Ranging accuracy (mm) +10 +5
Scan frequency (Hz) 10-100 100-1200 k
Field of view (°) 360 360 x 100
Average point density (pts/m?) 111 275,606

Table A2. The structure of additive biomass equations with different components (stem, branch,
foliage) and AGB for Changbai larch in northeastern China, sourced from Dong et al. (W;, stem
biomass; Wj,, branch biomass; Wf, foliage biomass; W,, AGB).

Component Models
Stem In Wy = —4.5363 + 1.7008-In DBH + 1.4804-In TH
Branch In W, = —3.3632 4+ 2.6728-In DBH — 0.7052-In TH
Foliage In Wy = —2.2879 4+ 1.3369-In DBH —0.0922-In TH
AGB In W, = In (W5 + W, + Wy)

Table A3. The model evaluation statistics of all parameter combinations.

Parameter
Combinations Alc BIC LL

ai 3032.088 3054.828 —1510.044

ap 3031.211 3053.950 —1509.606

as 3031.709 3054.449 —1509.854

ay 3029.853 3052.593 —1508.927

a1 a» 3035.211 3065.531 —1509.606

ap as 3036.087 3066.406 —1510.043

ay ay 3032.164 3062.483 —1508.082

ap as 3033.269 3063.588 —1508.634

ap ay 3031.936 3062.256 —1507.968

as ay 3031.729 3062.048 —1507.864
ay ap ag - - -

ay ap ay 3038.164 3079.854 —1508.082
ap as aq4 - - -
ay az ay - - -
ai az as a4 - - -

Note: - means model failed to converge.
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Table A4. The basic statistics of individual tree parameters (DBH, TH, CPA and AGB) with different
sample sizes.

Sample Sizes (Proportions) Variables Mean Standard Deviation Minimum  Maximum

DBH (cm) 24.69 6.81 10.00 4230
TH (m) 21.86 3.09 11.27 27.54

10,
327 (100%) CPA (m?) 14.81 8.67 0.94 58.44
AGB (kg) 301.03 174.91 24.11 951.38
DBH (cm) 24.84 6.78 10.20 42.30
o TH (m) 21.96 2.96 13.29 27.54
246 (75%) CPA (m?) 15.24 9.10 0.94 58.44
AGB (kg) 305.13 177.56 31.56 951.38
DBH (cm) 24.34 6.77 10.00 4230
TH (m) 21.87 3.19 11.64 27.54

10,
164 (50%) CPA (m?) 14.82 7.79 0.94 37.00
AGB (kg) 293.77 177.97 38.08 951.38
DBH (cm) 25.00 7.79 10.10 4230
o TH (m) 21.97 3.15 11.27 27.54
82 (25%) CPA (m?) 15.44 9.63 1.06 53.00
AGB (kg) 322.26 208.51 24.11 951.38
DBH (cm) 24.27 717 10.70 40.20
34 (10%) TH (m) 21.69 2.73 16.53 26.30
° CPA (m?) 15.73 11.29 1.06 53.00
AGB (kg) 287.51 188.48 4147 833.04

Note: DBH presented LiDAR-derived diameter at breast height, TH presented LiDAR-derived tree height, CPA
presented LiDAR-derived crown projection area.
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