BROWSE

Related Researcher

Author's Photo

Cho, Yoon-Kyoung
Integrated Nano-Biotech Lab (INBL)
Research Interests
  • Microfluidics, Lab-on-a-chip, personalized biomedical diagnostics, nanobioengineering

ITEM VIEW & DOWNLOAD

A microfluidic gel valve device using reversible sol-gel transition of methyl cellulose for biomedical application

Cited 6 times inthomson ciCited 6 times inthomson ci
Title
A microfluidic gel valve device using reversible sol-gel transition of methyl cellulose for biomedical application
Author
Yoon, DSCho, Yoon-KyoungOh, KWKim, SKim, YAHan, JILim, G
Issue Date
2006-02
Publisher
SPRINGER
Citation
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, v.12, no.3, pp.238 - 246
Abstract
We have fabricated a microfluidic gel valve device that used reversible sol-gel transition of methyl cellulose (MC). A microheater and a microtemperature sensor were implemented in each microchannel in the gel valve device. Before evaluating the performance of the gel valve device, various properties of the MC solution were investigated using viscometer, spectrophotometer, and NMR. Gelation temperature was increased as the MC concentration was increased. Clear gel, an intermediate state between clear sol and turbid gel, was found at the temperature range from 30-40°C to 50-60°C. Temperature at each microchannel of the device was measured and the effect of the temperature difference on the valve operation was elucidated. In order to have normal operation of the gel valve, it was important to keep the temperature of the heated microchannel around 60°C while keeping the temperature of the flowing microchannel below 35°C. The temperature difference between two microchannels was about 23 K when fan forced cooling (FFC) method was used. For normal performance of the gel valve device, a temporary pause of fluid flow for at least 5 s was required to complete the local gelation in the microchannel. Stable gel valve performance was obtained at the flow rates larger than 5 μl/min. The gel valve device showed no leakage up to 2.07×104 Pa.
URI
https://scholarworks.unist.ac.kr/handle/201301/5884
URL
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=31144472416
DOI
10.1007/s00542-005-0051-5
ISSN
0946-7076
Appears in Collections:
BME_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU