File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김태성

Kim, Taesung
Microfluidics & Nanomechatronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Patterned delivery and expression of gene constructs into zebrafish embryos using microfabricated interfaces

Author(s)
Bansal, TusharLenhart, JustinKim, TaesungDuan, CunmingMaharbiz, Michel M
Issued Date
2009-06
DOI
10.1007/s10544-008-9273-5
URI
https://scholarworks.unist.ac.kr/handle/201301/5805
Fulltext
https://link.springer.com/article/10.1007%2Fs10544-008-9273-5
Citation
BIOMEDICAL MICRODEVICES, v.11, no.3, pp.633 - 641
Abstract
We demonstrate a method which uses simple microfabrication and microfluidics to produce custom, shaped electroporators for the patterned delivery of foreign molecules into developing embryos. We show how these electroporators can be used to 'draw' two-dimensional patterns of tracer molecules, DNA and mRNA into the yolk and cells of zebrafish embryos (Danio rerio) at different stages of development. We demonstrate the successful delivery of patterns of Trypan Blue (normal dye), Texas Red (fluorescent dye), GFP-expressing DNA plasmids and GFP expressing mRNA constructs into both chorionated and dechorionated embryos. Both DNA and mRNA were expressed in the desired patterns subsequent to delivery. Square pulses of 10-20 V (0.20-0.40 kV/cm), 50-100 ms width were sufficient to create transient pores and introduce compounds from the late blastula period (3 hpf) to early pharyngula period (24 hpf) embryos. Using 24 hpf dechorionated embryos, we achieved a high survival of 91.3% and 89%, and a delivery efficiency of 38% and 50% for GFP-DNA and GFP-mRNA respectively. Lastly, we demonstrate the simultaneous delivery of different compounds into the developing embryo.
Publisher
SPRINGER
ISSN
1387-2176
Keyword (Author)
Spatio-temporalElectroporationDNAMicrofabricatedZebrafish
Keyword
IN-VIVO ELECTROPORATIONHIGH ELECTRIC FIELDSMANIPULATIONSTRANSFECTIONMICROCHIPSYSTEMSPACECELLSTIME

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.