File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권태혁

Kwon, Tae-Hyuk
Energy Recognition Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Phosphorescent sensor for phosphorylated peptides based on an iridium complex

Author(s)
Kang, Jung HyunKim, Hee JinKwon, Tae-HyukHong, Jong-In
Issued Date
2014-07
DOI
10.1021/jo5005263
URI
https://scholarworks.unist.ac.kr/handle/201301/5275
Fulltext
https://pubs.acs.org/doi/10.1021/jo5005263
Citation
JOURNAL OF ORGANIC CHEMISTRY, v.79, no.13, pp.6000 - 6005
Abstract
A bis[(4,6-difluorophenyl)pyridinato-N,C2']iridium(III) picolinate (FIrpic) derivative coupled with bis(Zn2+-dipicolylamine) (ZnDPA) was developed as a sensor (1) for phosphorylated peptides, which are related to many cellular mechanisms. As a control, a fluorescent sensor (2) based on anthracene coupled to ZnDPA was also prepared. When the total negative charge on the phosphorylated peptides was changed to -2, -4, and -6, the emission intensity of sensor 1 gradually increased by factors of up to 7, 11, and 16, respectively. In contrast, there was little change in the emission intensity of sensor 1 upon the addition of a neutral phosphorylated peptide, non-phosphorylated peptides, or various anions such as CO3 2-, NO3 -, SO4 2-, phosphate, azide, and pyrophosphate. Furthermore, sensor 1 could be used to visually discriminate between phosphorylated peptides and adenosine triphosphate in aqueous solution under a UV-vis lamp, unlike fluorescent sensor 2. This enhanced luminance of phosphorescent sensor 1 upon binding to a phosphorylated peptide is attributed to a reduction in the repulsion between the Zn 2+ ions due to the phenoxy anion, its strong metal-to-ligand charge transfer character, and a reduction in self-quenching.
Publisher
AMER CHEMICAL SOC
ISSN
0022-3263
Keyword
ENERGY-TRANSFERMOLECULAR RECOGNITIONAQUEOUS-SOLUTIONPYROPHOSPHATE SENSORARTIFICIAL RECEPTORSPROTEINBINDINGCHEMOSENSORBIOLOGYWATER

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.