File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

최경진

Choi, Kyoung Jin
Energy Conversion Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Two-Terminal Hybrid Tandem Solar Cells comprising Dye sensitized and Si solar cells

Author(s)
Im, MinJiKwon, JeongWon, Sang HyukKang, SungbumPark, Min JooShin, Jae CheolPark, Jong HyeokChoi, Kyoung Jin
Issued Date
2016-03-30
URI
https://scholarworks.unist.ac.kr/handle/201301/39989
Citation
2016 mrs spring meeting & exhibit
Abstract
Tandem solar cells (SCs) have been studied in order to harvest the fullest possible range of the solar spectrum. However, conventional technologies such as III-V compound semiconductor or a-Si/c-Si based tandem SCs cannot meet the high efficiency and low cost simultaneously. In this work, we demonstrate a hybrid tandem solar architecture comprising a DSSC(~1.7eV)/c-Si SCs(~1.1eV), which can be fabricated using solution processes and has a high efficiency. In order for a DSSC to be used as a top cell in a tandem SC, it should have a high transmittance at the long wavelength range (800 ~ 1100 nm) without compromising the cell efficiency. For this, we adopted a high-transparency cobalt-based electrolyte instead of conventional iodine-based one. In addition, the TiO2 photoanode was etched using HCl-HF acid to further decrease the size of nano-particles and correspondingly increase the transmittance of long-wavelength light. The highly-transparent DSSC, fabricated using these two techniques, has an enhanced transmittance at 800 nm from 55 to 70% with a high efficiency of 11.4%. In a tandem SC, the so-called junction layer, electrically connecting between a top and bottom cell, has critical role of recombining electrons and holes injected from both cells. And also, the junction layer should be electrically conductive to minimize resistance loss and optically transparent to minimize sacrificing photovoltaic performance in both cells. We have investigated two types of junction layers, ITO/Pt and ITO/PEDOT. The ITO/PEDOT layer was proven to be more effective because the band alignment of PEDOT is more appropriate between ITO and cobalt electrolyte compared to conventional Pt layer. The tandem SC with the ITO/PEDOT junction layer has much higher fill factor of 72.94% compared with 67.7% of that with Pt layer without degrading Voc and Jsc. The fully-optimized hybrid tandem solar cell efficiency was measured to be (1.34V)(15.0mA/cm2)(0.724) =14.5%.
Publisher
Materials research society

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.