File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

A physical organogel electrolyte:characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction

Author(s)
Kim, Young-SooCho, Yoon-GyoOdkhuu, DorjSong, Hyun-KonPark, Noejung
Issued Date
2014-03-09
URI
https://scholarworks.unist.ac.kr/handle/201301/36963
Citation
Gordon Research Conferences on Batteries
Abstract
Electrolytes are characterized by their ionic conductivity (sigma(i)). It is desirable that overall si results from the dominant contribution of the ions of interest (e. g. Li+ in lithium ion batteries or LIB). However, high values of cationic transference number (t(+)) achieved by solid or gel electrolytes have resulted in low sigma(i) leading to inferior cell performances. Here we present an organogel polymer electrolyte characterized by a high liquid-electrolyte-level sigma(i) (similar to 10(1) mS cm(-1)) with high t(+) of Li+ (>0.8) for LIB. A conventional liquid electrolyte in presence of a cyano resin was physically and irreversibly gelated at 60 degrees C without any initiators and crosslinkers, showing the behavior of lower critical solution temperature. During gelation, sigma(i) of the electrolyte followed a typical Arrhenius-type temperature dependency, even if its viscosity increased dramatically with temperature. Based on the Li+-driven ion conduction, LIB using the organogel electrolyte delivered significantly enhanced cyclability and thermal stability.
Publisher
Gordon Research Conferences on Batteries

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.