File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김하진

Kim, Hajin
Single Molecule Biophysics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

The C-terminal tail of the yeast mitochondrial transcription factor Mtf1 coordinates template strand alignment, DNA scrunching and timely transition into elongation

Author(s)
Basu, UrmimalaLee, Seung-WonDeshpande, AishwaryaShen, JiayuSohn, Byeong-KwonCho, HayoonKim, HajinPatel, Smita S.
Issued Date
2020-03
DOI
10.1093/nar/gkaa040
URI
https://scholarworks.unist.ac.kr/handle/201301/32033
Fulltext
https://academic.oup.com/nar/article/48/5/2604/5715817
Citation
NUCLEIC ACIDS RESEARCH, v.48, no.5, pp.2604 - 2620
Abstract
Mitochondrial RNA polymerases depend on initiation factors, such as TFB2M in humans and Mtf1 in yeast Saccharomyces cerevisiae, for promoterspecific transcription. These factors drive the melting of promoter DNA, but how they support RNA priming and growth was not understood. We show that the flexible C-terminal tails of Mtf1 and TFB2M play a crucial role in RNA priming by aiding template strand alignment in the active site for high-affinity binding of the initiating nucleotides. Using single-molecule fluorescence approaches, we show that the Mtf1 C-tail promotes RNA growth during initiation by stabilizing the scrunched DNA conformation. Additionally, due to its location in the path of the nascent RNA, the C-tail of Mtf1 serves as a sensor of the RNA- DNA hybrid length. Initially, steric clashes of the Mtf1 C-tail with short RNA-DNA hybrids cause abortive synthesis but clashes with longer RNA-DNA trigger conformational changes for the timely release of the promoter DNA to commence the transition into elongation. The remarkable similarities in the functions of the C-tail and sigma 3.2 finger of the bacterial factor suggest mechanistic convergence of a flexible element in the transcription initiation factor that engages the DNA template for RNA priming and growth and disengages when needed to generate the elongation complex.
Publisher
OXFORD UNIV PRESS
ISSN
0305-1048
Keyword
RNA-POLYMERASE PROCEEDSSTRUCTURAL BASISINITIAL TRANSCRIPTIONPROMOTER RECOGNITIONNUCLEOTIDEEVOLUTIONKINETICSINSIGHTSB2

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.