File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

GartnerAnton

Gartner, Anton
DNA Damage Response and Genetic Toxicology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

The NM23 family in development

Author(s)
Bilitou, AikateriniWatson, JulieGartner, AntonOhnuma, Shin-ichi
Issued Date
2009-09
DOI
10.1007/s11010-009-0121-6
URI
https://scholarworks.unist.ac.kr/handle/201301/31004
Fulltext
https://link.springer.com/article/10.1007%2Fs11010-009-0121-6
Citation
MOLECULAR AND CELLULAR BIOCHEMISTRY, v.329, no.1-2, pp.17 - 33
Abstract
The NM23 (non-metastatic 23) family is almost universally conserved across all three domains of life: eubacteria, archaea and eucaryotes. Unicellular organisms possess one NM23 ortholog, whilst vertebrates possess several. Gene multiplication through evolution has been accompanied by structural and functional diversification. Many NM23 orthologs are nucleoside diphosphate kinases (NDP kinases), but some more recently evolved members lack NDP kinase activity and/or display other functions, for instance, acting as protein kinases or transcription factors. These members display overlapping but distinct expression patterns during vertebrate development. In this review, we describe the functional differences and similarities among various NM23 family members. Moreover, we establish orthologous relationships through a phylogenetic analysis of NM23 members across vertebrate species, including Xenopus laevis and zebrafish, primitive chordates and several phyla of invertebrates. Finally, we summarize the involvement of NM23 proteins in development, in particular neural development. Carcinogenesis is a process of misregulated development, and NM23 was initially implicated as a metastasis suppressor. A more detailed understanding of the evolution of the family and its role in vertebrate development will facilitate elucidation of the mechanism of NM23 involvement in human cancer.
Publisher
SPRINGER
ISSN
0300-8177
Keyword (Author)
NM23DevelopmentXenopusNeurogenesisNDP kinase
Keyword
NUCLEOSIDE-DIPHOSPHATE KINASETUMOR-METASTASIS SUPPRESSORCARCINOMA-CELL-LINENERVE GROWTH-FACTORDICTYOSTELIUM-DISCOIDEUMDIFFERENTIAL EXPRESSIONDROSOPHILA DEVELOPMENTMOUSE ORGANOGENESISENZYMATIC-ACTIVITYCANCER METASTASIS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.