File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이근식

Lee, Geunsik
Computational Research on Electronic Structure and Transport in Condensed Materials
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Multiferroicity in atomic van der Waals heterostructures

Author(s)
Gong, CKim, EMWang, YLee, GeunsikZhang, X
Issued Date
2019-06
DOI
10.1038/s41467-019-10693-0
URI
https://scholarworks.unist.ac.kr/handle/201301/26866
Fulltext
https://www.nature.com/articles/s41467-019-10693-0
Citation
NATURE COMMUNICATIONS, v.10, no.1, pp.2657
Abstract
Materials that are simultaneously ferromagnetic and ferroelectric - multiferroics - promise the control of disparate ferroic orders, leading to technological advances in microwave magnetoelectric applications and next generation of spintronics. Single-phase multiferroics are challenged by the opposite d-orbital occupations imposed by the two ferroics, and heterogeneous nanocomposite multiferroics demand ingredients' structural compatibility with the resultant multiferroicity exclusively at inter-materials boundaries. Here we propose the two-dimensional heterostructure multiferroics by stacking up atomic layers of ferromagnetic Cr2Ge2Te6 and ferroelectric In2Se3, thereby leading to all-atomic multiferroicity. Through first-principles density functional theory calculations, we find as In2Se3 reverses its polarization, the magnetism of Cr2Ge2Te6 is switched, and correspondingly In2Se3 becomes a switchable magnetic semiconductor due to proximity effect. This unprecedented multiferroic duality (i.e., switchable ferromagnet and switchable magnetic semiconductor) enables both layers for logic applications. Van der Waals heterostructure multiferroics open the door for exploring the low-dimensional magnetoelectric physics and spintronic applications based on artificial superlattices.
ISSN
2041-1723
Keyword
FERROMAGNETISMFERROELECTRICITY

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.