File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이근식

Lee, Geunsik
Computational Research on Electronic Structure and Transport in Condensed Materials
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 2657 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 10 -
dc.contributor.author Gong, C -
dc.contributor.author Kim, EM -
dc.contributor.author Wang, Y -
dc.contributor.author Lee, Geunsik -
dc.contributor.author Zhang, X -
dc.date.accessioned 2023-12-21T19:07:36Z -
dc.date.available 2023-12-21T19:07:36Z -
dc.date.created 2019-06-24 -
dc.date.issued 2019-06 -
dc.description.abstract Materials that are simultaneously ferromagnetic and ferroelectric - multiferroics - promise the control of disparate ferroic orders, leading to technological advances in microwave magnetoelectric applications and next generation of spintronics. Single-phase multiferroics are challenged by the opposite d-orbital occupations imposed by the two ferroics, and heterogeneous nanocomposite multiferroics demand ingredients' structural compatibility with the resultant multiferroicity exclusively at inter-materials boundaries. Here we propose the two-dimensional heterostructure multiferroics by stacking up atomic layers of ferromagnetic Cr2Ge2Te6 and ferroelectric In2Se3, thereby leading to all-atomic multiferroicity. Through first-principles density functional theory calculations, we find as In2Se3 reverses its polarization, the magnetism of Cr2Ge2Te6 is switched, and correspondingly In2Se3 becomes a switchable magnetic semiconductor due to proximity effect. This unprecedented multiferroic duality (i.e., switchable ferromagnet and switchable magnetic semiconductor) enables both layers for logic applications. Van der Waals heterostructure multiferroics open the door for exploring the low-dimensional magnetoelectric physics and spintronic applications based on artificial superlattices. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.10, no.1, pp.2657 -
dc.identifier.doi 10.1038/s41467-019-10693-0 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85067273293 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26866 -
dc.identifier.url https://www.nature.com/articles/s41467-019-10693-0 -
dc.identifier.wosid 000471586800013 -
dc.language 영어 -
dc.title Multiferroicity in atomic van der Waals heterostructures -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus FERROMAGNETISM -
dc.subject.keywordPlus FERROELECTRICITY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.