BROWSE

Related Researcher

Author's Photo

Comuzzi, Marco
Intelligent Enterprise Lab (IEL)
Research Interests
  • business process management, enterprise systems, process monitoring, compliance

ITEM VIEW & DOWNLOAD

Autoencoders for improving quality of process event logs

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Autoencoders for improving quality of process event logs
Author
Nguyen, Hoang Thi CamLee, SuhwanKim, JongchanKo, JonghyeonComuzzi, Marco
Issue Date
2019-10
Publisher
Pergamon Press Ltd.
Citation
EXPERT SYSTEMS WITH APPLICATIONS, v.131, pp.132 - 147
Abstract
Low quality of business process event logs, as determined by anomalous and missing values, is often unavoidable in practical contexts. The output of process analysis that uses event logs with missing and anomalous values is also likely to be of low quality, thus decreasing the quality of any decisions based on it. While previous work has focused on reconstructing missing events in an event log or removing anomalous traces, in this paper we focus on detecting anomalous values and reconstructing missing values at the level of attributes in event logs. We propose methods based on autoencoders, which are a class of neural networks that can reconstruct their own input and are particularly suitable to learn a model of the complex relationships among attribute values in an event log. These methods do not rely on any a-priori knowledge about the business process that generated an event log and are evaluated using real world and artificially-generated event logs. The paper also discusses a qualitative analysis of the impact of event log cleaning and reconstruction on the output of process discovery. The proposed approach shows remarkable performance regarding activity labels and timestamps in artificial event logs. The performance in the case of real world event logs, in particular timestamp anomaly detection, is lower, which may be due to high variability of attribute values in the chosen event logs. Process models discovered from reconstructed event logs are characterised by lower variability of allowed behaviour and, therefore, are more usable in practice.
URI
https://scholarworks.unist.ac.kr/handle/201301/26642
URL
https://www.sciencedirect.com/science/article/pii/S0957417419302829?via%3Dihub
DOI
10.1016/j.eswa.2019.04.052
ISSN
0957-4174
Appears in Collections:
SME_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU