Stretchable electronics are considered as next-generation devices; however, to realize stretchable electronics, it is first necessary to develop a deformable energy device. Of the various components in energy devices, the fabrication of stretchable current collectors is crucial because they must be mechanically robust and have high electrical conductivity under deformation. In this study, the authors present a conductive polymer composite composed of Jabuticaba-like hybrid carbon fillers containing carbon nanotubes and carbon black in a simple solution process. The hybrid carbon/polymer (HCP) composite is found to effectively retain its electrical conductivity, even when under high strain of approximate to 200%. To understand the behavior of conductive fillers in the polymer matrix when under mechanical strain, the authors investigate the microstructure of the composite using an in situ small-angle X-ray scattering analysis. The authors observe that the HCP produces efficient electrical pathways for filler interconnections upon stretching. The authors develop a stretchable aqueous rechargeable lithium-ion battery (ARLB) that utilizes this HCP composite as a stretchable current collector. The ARLB exhibits excellent rate capability (approximate to 90 mA h g(-1) at a rate of 20 C) and outstanding capacity retention of 93% after 500 cycles. Moreover, the stretchable ARLB is able to efficiently deliver power even when under 100% strain.