BROWSE

Related Researcher

Author's Photo

Suh, Pann-Ghill
BioSignal Network Lab (BSN)
Research Interests
  • Signal transduction, cancer, metabolism, phospholipase C

ITEM VIEW & DOWNLOAD

Differential activation of formyl peptide receptor signaling by peptide Ligands

Cited 32 times inthomson ciCited 32 times inthomson ci
Title
Differential activation of formyl peptide receptor signaling by peptide Ligands
Author
Bae, Yoe-SikSong, Ji YoungKim, YoundongHe, RongYe, Richard D.Kwak, Jong-YoungSuh, Pann-GhillRyu, Sung Ho
Issue Date
2003-10
Publisher
AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
Citation
MOLECULAR PHARMACOLOGY, v.64, no.4, pp.841 - 847
Abstract
Formyl peptide receptor (FPR) and formyl peptide receptor like 1 (FPRL1) play important roles in inflammation and immunity. Stimulation of FPR and FPRL1 initiates a cascade of signaling events, leading to activation of various phagocyte responses, including chemotaxis, superoxide generation, and exocytosis. Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm) is a synthetic peptide that binds to and activates FPR and FPRL1. To develop agonists that selectively activate phagocyte functions and therefore protect host from unwanted tissue damage, we generated various WKYMVm analogs and examined their effects on cellular responses in FPR- or FPRL1-expressing RBL-2H3 cells. Analogs with substitution at the third position such as WKGMVm, WKRMVm, as well as analogs with substitution at the sixth D-Met, selectively altered calcium mobilization in cells expressing FPRL1 but not in cells expressing FPR. Whereas binding of WKYMVm to FPR activates a broad spectrum of cellular signaling events, including phospholipase C-mediated intracellular calcium concentration ([Ca2+](i)) mobilization and activation of extracellular signal-regulated kinase (ERK) and Akt, WKGMVm and WKRMVm could only activate ERK and Akt but did not induce [Ca2+](i) mobilization. With respect to phagocyte functions, WKYMVm could induce both chemotaxis and exocytosis, but the two analogs WKGMVm and WKRMVm could only induce chemotaxis but not exocytosis. This study demonstrates that a major phagocyte chemoattractant receptor FPR may be activated differentially by distinct peptide ligands. Our results suggest that WKGMVm and WKRMVm may be useful model for further development of pharmacological agents that selectively activate FPR- mediated functions
URI
https://scholarworks.unist.ac.kr/handle/201301/16518
URL
http://molpharm.aspetjournals.org/content/64/4/841.long
DOI
10.1124/mol.64.4.841
ISSN
0026-895X
Appears in Collections:
BIO_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU