File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

서판길

Suh, Pann-Ghill
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 847 -
dc.citation.number 4 -
dc.citation.startPage 841 -
dc.citation.title MOLECULAR PHARMACOLOGY -
dc.citation.volume 64 -
dc.contributor.author Bae, Yoe-Sik -
dc.contributor.author Song, Ji Young -
dc.contributor.author Kim, Youndong -
dc.contributor.author He, Rong -
dc.contributor.author Ye, Richard D. -
dc.contributor.author Kwak, Jong-Young -
dc.contributor.author Suh, Pann-Ghill -
dc.contributor.author Ryu, Sung Ho -
dc.date.accessioned 2023-12-22T11:08:56Z -
dc.date.available 2023-12-22T11:08:56Z -
dc.date.created 2015-08-17 -
dc.date.issued 2003-10 -
dc.description.abstract Formyl peptide receptor (FPR) and formyl peptide receptor like 1 (FPRL1) play important roles in inflammation and immunity. Stimulation of FPR and FPRL1 initiates a cascade of signaling events, leading to activation of various phagocyte responses, including chemotaxis, superoxide generation, and exocytosis. Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm) is a synthetic peptide that binds to and activates FPR and FPRL1. To develop agonists that selectively activate phagocyte functions and therefore protect host from unwanted tissue damage, we generated various WKYMVm analogs and examined their effects on cellular responses in FPR- or FPRL1-expressing RBL-2H3 cells. Analogs with substitution at the third position such as WKGMVm, WKRMVm, as well as analogs with substitution at the sixth D-Met, selectively altered calcium mobilization in cells expressing FPRL1 but not in cells expressing FPR. Whereas binding of WKYMVm to FPR activates a broad spectrum of cellular signaling events, including phospholipase C-mediated intracellular calcium concentration ([Ca2+](i)) mobilization and activation of extracellular signal-regulated kinase (ERK) and Akt, WKGMVm and WKRMVm could only activate ERK and Akt but did not induce [Ca2+](i) mobilization. With respect to phagocyte functions, WKYMVm could induce both chemotaxis and exocytosis, but the two analogs WKGMVm and WKRMVm could only induce chemotaxis but not exocytosis. This study demonstrates that a major phagocyte chemoattractant receptor FPR may be activated differentially by distinct peptide ligands. Our results suggest that WKGMVm and WKRMVm may be useful model for further development of pharmacological agents that selectively activate FPR- mediated functions -
dc.identifier.bibliographicCitation MOLECULAR PHARMACOLOGY, v.64, no.4, pp.841 - 847 -
dc.identifier.doi 10.1124/mol.64.4.841 -
dc.identifier.issn 0026-895X -
dc.identifier.scopusid 2-s2.0-0141569325 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/16518 -
dc.identifier.url http://molpharm.aspetjournals.org/content/64/4/841.long -
dc.identifier.wosid 000185431300007 -
dc.language 영어 -
dc.publisher AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS -
dc.title Differential activation of formyl peptide receptor signaling by peptide Ligands -
dc.type Article -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.