File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김정범

Kim, Jeong Beom
Molecular Biomedicine Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

Author(s)
Kim, Jeong BeomDorn, IsabelKlich, KatharinaArauzo-Bravo, Marcos J.Radstaak, MartinaSantourlidis, SimeonGhanjati, FouedRadke, Teja F.Psathaki, Olympia E.Hargus, GunnarKramer, JanEinhaus, MartinKogler, G esineWernet, PeterScholer, Hans R.Schlenke, PeterZaehres, Holm
Issued Date
2015-01
DOI
10.3324/haematol.2014.108068
URI
https://scholarworks.unist.ac.kr/handle/201301/10809
Fulltext
http://www.haematologica.org/content/100/1/32.full-text.pdf+html
Citation
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, v.100, no.1, pp.32 - 41
Abstract
Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.
Publisher
FERRATA STORTI FOUNDATION
ISSN
0390-6078
Keyword
IN-VITROGENERATIONVIVOERYTHROBLASTSEXPANSIONTRANSFUSIONRED-BLOOD-CELLSCORD BLOODHEMATOPOIETIC PROGENITORSLIVER-CELLS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.