BROWSE

Related Researcher

Author's Photo

Joo, Changhee
Learning, Modeling, and Networking
Research Interests
  • Learning, modeling, networking, resource allocation, stochastic optimization, distributed computing, low complexity

ITEM VIEW & DOWNLOAD

Joint Congestion Control and Distributed Scheduling for Throughput Guarantees in Wireless Networks

Cited 3 times inthomson ciCited 5 times inthomson ci
Title
Joint Congestion Control and Distributed Scheduling for Throughput Guarantees in Wireless Networks
Author
Joo, ChangheeSharma, GauravShroff, Ness B.Mazumdar, Ravi R.
Keywords
Cross-layer design; wireless communication systems simulation and modeling; distributed algorithm; maximal scheduling
Issue Date
2010-12
Publisher
ASSOC COMPUTING MACHINERY
Citation
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, v.21, no.1, pp.5:1 - 5:25
Abstract
We consider the problem of throughput-optimal cross-layer design of wireless networks. We propose a joint congestion control and scheduling algorithm that achieves a fraction 1/dI(G) of the capacity region, where dI(G) depends on certain structural properties of the underlying connectivity graph G of the wireless network, and also on the type of interference constraints. For a wide range of wireless networks, dI(G) can be upper bounded by a constant, independent of the number of nodes in the network. The scheduling element of our algorithm is the maximal scheduling policy. Although this scheduling policy has been considered in several previous works, the challenges underlying its practical implementation in a fully distributed manner while accounting for necessary message exchanges have not been addressed in the literature. In this article, we propose two algorithms for the distributed implementation of the maximal scheduling policy accounting for message exchanges, and analytically show that they still can achieve the performance guarantee under the 1-hop and 2-hop interference models. We also evaluate the performance of our cross-layer solutions in more realistic network settings with imperfect synchronization under the Signal-to-Interference-Plus-Noise Ratio (SINR) interference model, and compare with the standard layered approaches such as TCP over IEEE 802.11b DCF networks.
URI
https://scholarworks.unist.ac.kr/handle/201301/9815
DOI
10.1145/1870085.1870090
ISSN
1049-3301
Appears in Collections:
EE_Journal Papers
Files in This Item:
000285293700005.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU