BROWSE

Related Researcher

Author's Photo

Son, Jae Sung
Nanomaterials Science and Engineering Lab (NSE)
Research Interests
  • Nanoparticle, 3D printing, Thermoelectrics, Electronics

ITEM VIEW & DOWNLOAD

Bi1-xSbx Alloy Nanocrystals: Colloidal Synthesis, Charge Transport, and Thermoelectric Properties

Cited 4 times inthomson ciCited 0 times inthomson ci
Title
Bi1-xSbx Alloy Nanocrystals: Colloidal Synthesis, Charge Transport, and Thermoelectric Properties
Author
Zhang, HaoSon, Jae SungJang, JaeyoungLee, Jong-SooOng, Wee-LiatMalen, Jonathan A.Talapin, Dmitri V.
Keywords
Bi1-xSbx nanocrystals; electrical conductivity; grain boundaries; Hall effect measurements; surface chemistry; thermoelectrics
Issue Date
2013-11
Publisher
AMER CHEMICAL SOC
Citation
ACS NANO, v.7, no.11, pp.10296 - 10306
Abstract
Nanostructured Bi1-xSbx alloys constitute a convenient system to study charge transport in a nanostructured narrow-gap semiconductor with promising thermoelectric properties. In this work, we developed the colloidal synthesis of monodisperse sub-10 nm Bi 1-xSbx alloy nanocrystals (NCs) with controllable size and compositions. The surface chemistry of Bi1-xSbx NCs was tailored with inorganic ligands to improve the interparticle charge transport as well as to control the carrier concentration. Temperature-dependent (10-300 K) electrical measurements were performed on the Bi1-xSbx NC based pellets to investigate the effect of surface chemistry and grain size (∼10-40 nm) on their charge transport properties. The Hall effect measurements revealed that the temperature dependence of carrier mobility and concentration strongly depended on the grain size and the surface chemistry, which was different from the reported bulk behavior. At low temperatures, electron mobility in nanostructured Bi1-xSbx was directly proportional to the average grain size, while the concentration of free carriers was inversely proportional to the grain size. We propose a model explaining such behavior. Preliminary measurements of thermoelectric properties showed a ZT value comparable to those of bulk Bi1-xSbx alloys at 300 K, suggesting a potential of Bi1-xSbx NCs for low-temperature thermoelectric applications.
URI
Go to Link
DOI
10.1021/nn404692s
ISSN
1936-0851
Appears in Collections:
MSE_Journal Papers
Files in This Item:
2-s2.0-84888862982.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU