BROWSE

Related Researcher

Author's Photo

Kim, Sung-Phil
Brain-Computer Interface (BCI) Lab
Research Interests
  • Brain-computer interface, Statistical Signal Processing, Neural Code, Neuromarketing

ITEM VIEW & DOWNLOAD

Changes in the thalamocortical connectivity during anesthesia-induced transitions in consciousness

Cited 5 times inthomson ciCited 0 times inthomson ci
Title
Changes in the thalamocortical connectivity during anesthesia-induced transitions in consciousness
Author
Kim, Sung-PhilHwang, EunjinKang, Jae-HwanKim, SeunghwanChoi, Jee Hyun
Issue Date
2012-03
Publisher
LIPPINCOTT WILLIAMS & WILKINS
Citation
NEUROREPORT, v.23, no.5, pp.294 - 298
Abstract
Thalamocortical networks play an important role in information integration during consciousness. However, little is known about how the information flows between the thalamus and the cortex are affected by a loss of consciousness. To investigate this issue, we analyzed effective connectivity between the cortex and the thalamus in animals during anesthesia-induced transitions. By recording the electroencephalogram from the primary motor and the primary somatosensory cortex and by recording local field potentials from the ventral lateral and the ventrobasal thalamic nuclei, we evaluated changes in the conditional Granger causality between cortical and thalamic electrical activity as mice gradually lost consciousness from the use of anesthesia (ketamine/xylazine). The point of loss of consciousness was indicated by a moment of loss of movement that was measured using a head-mounted motion sensor. The results showed that 65% of the thalamocortical information flows were changed by anesthesia-induced loss of consciousness. Specifically, the effective connectivity between the cortex and the ventral lateral thalamus was altered such that the primary motor and the primary somatosensory cortex Granger-caused the ventral lateral thalamus before loss of consciousness whereas the ventral lateral thalamus Granger-caused the primary motor cortex and the primary somatosensory cortex after loss of consciousness. In contrast, the primary somatosensory cortex consistently Granger-caused the ventrobasal thalamus, regardless of the loss of consciousness. These results suggest how information flows change across the thalamocortical network during transitions in consciousness.
URI
https://scholarworks.unist.ac.kr/handle/201301/9550
DOI
10.1097/WNR.0b013e3283509ba0
ISSN
0959-4965
Appears in Collections:
BME_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU