File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이덕중

Lee, Deokjung
Computational Reactor physics & Experiment Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Multi-group SP3 approximation for simulation of a three-dimensional PWR rod ejection accident

Author(s)
Lee, DeokjungKozlowski, TomaszDownar, Thomas J.
Issued Date
2015-03
DOI
10.1016/j.anucene.2014.10.019
URI
https://scholarworks.unist.ac.kr/handle/201301/9404
Fulltext
http://www.sciencedirect.com/science/article/pii/S0306454914005581
Citation
ANNALS OF NUCLEAR ENERGY, v.77, pp.94 - 100
Abstract
Previous researchers have shown that the simplified P3 (SP3) approximation is capable of providing sufficiently high accuracy for both static and transient simulations for reactor core analysis with considerably less computational expense than higher order transport methods such as the discrete ordinate or the full spherical harmonics methods. The objective of this paper is to provide a consistent comparison of two-group (2G) and multi-group (MG) diffusion and SP3 transport for rod ejection accident (REA) in a practical light water reactor (LWR) problem. The analysis is performed on two numerical benchmarks, a 3 x 3 assembly mini-core and a full pressurized water reactor (PWR) core. The calculations were performed using pin homogenized and assembly homogenized cross sections for a series of benchmarks of increasing difficulty, in two-dimensional (2D) and three-dimensional (3D), 2G and MG, diffusion and transport, as well as with and without feedback. All results show consistency with the reference results obtained from higher-order methods. It is demonstrated that the analyzed problems show small group-homogenization effects, but relatively significant transport effects which are satisfactorily addressed by the SP3 transport method. The sensitivity tests also show that, for the REA simulation, the MG is more conservative than 2G, P1 is more conservative than SP3 for a 1/3 MOX loaded full-core problem.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
ISSN
0306-4549
Keyword (Author)
Full-coreMOXPARCSPin-by-pinSP3

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.