BROWSE

Related Researcher

Author's Photo

Park, Noejung
Computational Physics & Electronic Structure Lab
Research Interests
  • Electronic structure calculation, computational physics, computational material science

ITEM VIEW & DOWNLOAD

Calculation of hydrogen physisorption affinity to graphene species with ab-intio and density-functional methods

Cited 1 times inthomson ciCited 1 times inthomson ci
Title
Calculation of hydrogen physisorption affinity to graphene species with ab-intio and density-functional methods
Author
Park, NoejungLim, ScokhoKim, GyubongJhi, Seung-Hoon
Keywords
Ab-initio method; Graphene; Hydrogen storage
Issue Date
2008-08
Publisher
KOREAN PHYSICAL SOC
Citation
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, v.53, no.2, pp.691 - 694
Abstract
The physisorption strength of molecular hydrogen to graphene structures is investigated with the density-functional theory (DFT), the Møller-Plesset second-order perturbation and the coupled-cluster singles and doubles with perturbative triples correction (CCSD(T)). While the DFT with the generalized gradient approximation largely fails to describe the binding energetics, the local density approximation (LDA) qualitatively captures the overall binding features of the van der Waals interactions. Our calculations of H2 binding to large graphene species show that the DFT with the LDA somewhat consistently overestimates the binding energy by about 30 % and underestimates the binding distance by about 9 % compared to more accurate and more highly correlated methods like the CCSD(T). However, for small graphene systems, the DFT and more highly correlated methods exhibit a substantial discrepancy, which can be attributed to the non-negligible self-interaction errors in the DFT.
URI
Go to Link
ISSN
0374-4884
Appears in Collections:
PHY_Journal Papers
Files in This Item:
article.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU