BROWSE

Related Researcher

Author's Photo

Kim, Byeong-Su
Soft and Hybrid Nanomaterials Lab
Research Interests
  • Carbon materials, polymer, Layer-by-Layer (LbL) assembly, hyperbranched polymer, polyglycerol (PG), bio-applications

ITEM VIEW & DOWNLOAD

Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces

Cited 139 times inthomson ciCited 175 times inthomson ci
Title
Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces
Author
Kim, Byeong-SuPark, Sang WookHammond, Paula T.
Keywords
Biodegradable; Block copolymer micelle hydrogen bond; Drug delivery; Layer-by-layer; Polymer assembly
Issue Date
2008-02
Publisher
AMER CHEMICAL SOC
Citation
ACS NANO, v.2, no.2, pp.386 - 392
Abstract
We present the integration of amphiphilic block copolymer micelles as nanometer-sized vehicles for hydrophobic drugs within layer-by-layer (LbL) films using alternating hydrogen bond interactions as the driving force for assembly for the first time, thus enabling the incorporation of drugs and pH-sensitive release. The film was constructed based on the hydrogen banding between poly(acrylic acid) (PAA) as an H-bond donor and biodegradable poly(ethylene oxide)-block-poly(E-caprolactone) (PEO-b-KL) micelles as the H-bond acceptor when assembled under acidic conditions. By taking advantage of the weak interactions of the hydrogen-bonded film on hydrophobic surfaces, it is possible to generate flexible free-standing films of these materials. A free-standing micelle LbL film of (PEG-b-PCL/PAA)60 with a thickness of 3.1 μm was isolated, allowing further characterization of the bulk film properties, including morphology and phase transitions, using transmission electron microscopy and differential scanning calorimetry. Because of the sensitive nature of the hydrogen bonding employed to build the multilayers, the film can be rapidly deconstructed to release micelles upon exposure to physiological conditions. However, we could also successfully control the rate of film deconstruction by cross-linking carboxylic acid groups in PAA through thermally induced anhydride linkages, which retard the drug release to the surrounding medium to enable sustained release over multiple days. To demonstrate efficacy in delivering active therapeutics, in vitro Kirby-Bauer assays against Staphylococcus aureus were used to illustrate that the drug-loaded micelle LbL film can release significant amounts of an active antibacterial drug, triclosan, to inhibit the growth of bacteria. Because the micellar encapsulation of hydrophobic therapeutics does not require specific chemical interactions, we believe this noncovalent approach provides a new route to integrating active small, uncharged, and hydrophobic therapeutics into LbL thin films for biological and biomedical coatings.
URI
Go to Link
DOI
10.1021/nn700408z
ISSN
1936-0851
Appears in Collections:
PHY_Journal Papers
Files in This Item:
2-s2.0-42549132351.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU