BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Population estimation based on multi-sensor data fusion

Cited 17 times inthomson ciCited 16 times inthomson ci
Title
Population estimation based on multi-sensor data fusion
Author
Lu, ZhenyuIm, JunghoQuackenbush, LindiHalligan, Kerry
Keywords
Area-based; Building footprint; Classification errors; Coefficient of determination; Light detection and ranging; Machine-learning; Multisensor data fusion; Quickbird; Residential areas; Residential building; Root-mean square errors; Sensing data; Shape information; Spectral data; Study sites
Issue Date
2010-07
Publisher
TAYLOR & FRANCIS LTD
Citation
INTERNATIONAL JOURNAL OF REMOTE SENSING, v.31, no.21, pp.5587 - 5604
Abstract
This research examines the utility of QuickBird imagery and Light Detection and Ranging (LiDAR) data for estimating population at the census-block level using two approaches: area-based and volume-based. Residential-building footprints are first delineated from the remote-sensing data using image segmentation and machine-learning decision-tree classification. Regression analysis is used to model the relationship between population and the area or volume of the delineated residential buildings. Both approaches result in successful performance for estimating population with high accuracy (coefficient of determination = 0.8-0.95; root-mean-square error = 10-30 people; relative root-mean-square error = 0.1-0.3). The area-based approach is slightly better than the volume-based approach because the residential areas of the study sites are generally homogeneous (i.e. single houses), and the volume-based approach is more sensitive to classification errors. The LiDAR-derived shape information such as height greatly improves population estimation compared to population estimation using only spectral data.
URI
Go to Link
DOI
10.1080/01431161.2010.496801
ISSN
0143-1161
Appears in Collections:
UEE_Journal Papers
Files in This Item:
2-s2.0-78549242288.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU