File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김성필

Kim, Sung-Phil
Brain-Computer Interface Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

A method to find temporal structure of neuronal coactivity patterns with across-trial correlations

Author(s)
Sihn, DuhoChae, SoyoungKim, Sung-Phil
Issued Date
2024-08
DOI
10.1016/j.jneumeth.2024.110172
URI
https://scholarworks.unist.ac.kr/handle/201301/83053
Citation
JOURNAL OF NEUROSCIENCE METHODS, v.408, pp.110172
Abstract
Background: The across-trial correlation of neurons' coactivity patterns emerges to be important for information coding, but methods for finding their temporal structures remain largely unexplored. New method: In the present study, we propose a method to find time clusters in which coactivity patterns of neurons are correlated across trials. We transform the multidimensional neural activity at each timing into a coactivity pattern of binary states, and predict the coactivity patterns at different timings. We devise a method suitable for these coactivity pattern predictions, call general event prediction. Cross-temporal prediction accuracy is then used to estimate across-trial correlations between coactivity patterns at two timings. We extract time clusters from the cross-temporal prediction accuracy by a modified k-means algorithm. Results: The feasibility of the proposed method is verified through simulations based on ground truth. We apply the proposed method to a calcium imaging dataset recorded from the motor cortex of mice, and demonstrate time clusters of motor cortical coactivity patterns during a motor task. Comparison with existing methods: While the existing cosine similarity method, which does not account for acrosstrial correlation, shows temporal structures only for contralateral neural responses, the proposed method reveals those for both contralateral and ipsilateral neural responses, demonstrating the effect of across-trial correlations. Conclusions: This study introduces a novel method for measuring the temporal structure of neuronal ensemble activity.
Publisher
ELSEVIER
ISSN
0165-0270
Keyword (Author)
Temporal structureTime clusterGeneral event predictionAcross -trial correlationCoactivity pattern
Keyword
MOTOR CORTEXENSEMBLES

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.