BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas

Cited 12 times inthomson ciCited 14 times inthomson ci
Title
Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas
Author
Rhee, JinyoungIm, JunghoCarbone, Gregory J.Jensen, John R.
Keywords
Climate regions; Clustering; Decision trees; MODIS; Remote sensing; TRMM
Issue Date
2008-06
Publisher
ELSEVIER SCIENCE INC
Citation
REMOTE SENSING OF ENVIRONMENT, v.112, no.6, pp.3099 - 3111
Abstract
Climatologically homogeneous regions in the Carolinas were delineated using a multi-step approach integrating in-situ and remotely-sensed data. We adopted a consensus clustering technique that obtains climate regions for precipitation and temperature separately. Both average linkage hierarchical and k-means non-hierarchical clustering methods were used to create weather station clusters. Using the resulting precipitation and temperature clusters as training data, we performed a machine-learning decision tree classification of remotely-sensed data (i.e., MODIS and TRMM) to map five precipitation classes and seven temperature classes for the Carolinas. These data were intersected to produce 17 consensus clusters for the Carolinas, and 16 climate regions when summarized by counties. The resultant climate regions showed rational climate regionalization reflecting controls on Carolina climate including topography, latitude, storm tracks, and proximity to the Atlantic Ocean. The use of remotely-sensed data effectively helped the delineation between weather station clusters and even detected consensus clusters that were not identified by intersecting weather station clusters grouped using only in-situ data. We compared the regions with the 15 existing National Climatic Data Center climate divisions using within- and between-cluster standard deviations for both in-situ and remotely-sensed data. Climate regions could improve the existing climate divisions in delineating climatologically homogeneous regions and in separating heterogeneous regions.
URI
Go to Link
DOI
10.1016/j.rse.2008.03.001
ISSN
0034-4257
Appears in Collections:
UEE_Journal Papers
Files in This Item:
2-s2.0-43949096156.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU