File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

강세병

Kang, Sebyung
Protein Nanobio Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3801 -
dc.citation.number 10 -
dc.citation.startPage 3794 -
dc.citation.title BIOMACROMOLECULES -
dc.citation.volume 15 -
dc.contributor.author Moon, Hyojin -
dc.contributor.author Lee, Jisu -
dc.contributor.author Min, Junseon -
dc.contributor.author Kang, Sebyung -
dc.date.accessioned 2023-12-22T02:09:56Z -
dc.date.available 2023-12-22T02:09:56Z -
dc.date.created 2014-11-04 -
dc.date.issued 2014-10 -
dc.description.abstract Protein cage nanoparticles are excellent candidates for use as multifunctional delivery nanoplatforms because they are built from biomaterials and have a well-defined structure. A novel protein cage nanoparticle, encapsulin, isolated from thermophilic bacteria Thermotoga maritima, is prepared and developed as a versatile template for targeted delivery nanoplatforms through both chemical and genetic engineering. It is pivotal for multifunctional delivery nanoplatforms to have functional plasticity and versatility to acquire targeting ligands, diagnostic probes, and drugs simultaneously. Encapsulin is genetically engineered to have unusual heat stability and to acquire multiple functionalities in a precisely controlled manner. Hepatocellular carcinoma (HCC) cell binding peptide (SP94-peptide, SFSIIHTPILPL) is chosen as a targeting ligand and displayed on the surface of engineered encapsulin (Encap-loophis42C123) through either chemical conjugation or genetic insertion. The effective and selective targeted delivery of SP94-peptide displaying encapsulin (SP94-Encap-loophis42C123) to HepG2 cells is confirmed by fluorescent microscopy imaging. Aldoxorubicin (AlDox), an anticancer prodrug, is chemically loaded to SP94-Encap-loophis42C123 via thiol-maleimide Michael-type addition, and the efficacy of the delivered drugs is evaluated with a cell viability assay. SP94-Encap-loophis42C123-AlDox shows comparable killing efficacy with that of free drugs without the platform's own cytotoxicity. Functional plasticity and versatility of the engineered encapsulin allow us to introduce targeting ligands, diagnostic probes, and therapeutic reagents simultaneously, providing opportunities to develop multifunctional delivery nanoplatforms. -
dc.identifier.bibliographicCitation BIOMACROMOLECULES, v.15, no.10, pp.3794 - 3801 -
dc.identifier.doi 10.1021/bm501066m -
dc.identifier.issn 1525-7797 -
dc.identifier.scopusid 2-s2.0-84908012108 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/8246 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84908012108 -
dc.identifier.wosid 000343026600035 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science -
dc.relation.journalResearchArea Biochemistry & Molecular Biology; Chemistry; Polymer Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.