JOURNAL OF THE KOREAN CERAMIC SOCIETY, v.61, no.5, pp.854 - 860
Abstract
This study investigates the electrical properties of Pb(Mg1/3Nb2/3)-PbTiO3 (PMN-PT) single crystals subjected to corona poling (CorP) compared to direct current poling (DCP) and alternating current poling (ACP) methods. The results revealed the superiority of CorP in terms of polarization retention and softening. The corona-poled sample demonstrated a higher depolarization temperature (T-d similar to 100 celcius) than DCP or ACP methods (T-d similar to 90 celcius), indicating improved polarization stability at elevated temperatures. Furthermore, lowering of the coercive field (EC) in CorP samples suggests CorP makes the materials electrically softer. These advantages stem from the noncontact nature of the CorP method, which minimizes the risk of localized dielectric breakdown, and ensures a uniform electric field distribution. This work sheds a light on the potential of CorP as a promising technique for enhancing the electrical performance of materials in piezoelectric applications.