File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

채한기

Chae, Han Gi
Polymer nano-composites and Carbon Fiber Laboratory
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

All‐biomass‐based strong nanocomposite fibers of agar and cellulose nanocrystals and their dye removal applications

Author(s)
Lee, YoungeunKim, Hyo JeongKim, Min WooMiyawaki, JinChae, Han GiEom, Youngho
Issued Date
2024-03
DOI
10.1007/s13367-024-00089-y
URI
https://scholarworks.unist.ac.kr/handle/201301/81959
Citation
KOREA-AUSTRALIA RHEOLOGY JOURNAL
Abstract
Fiber-based commodities represent a substantial fraction of plastic waste, leading to environmental harm. Discarded sanitary masks and fishing equipment undergo degradation, generating microfiber plastics, thereby presenting a notable hazard to both human health and the ecosystem. In this study, mechanically strong and environmentally friendly nanocomposite fibers were prepared by dry-jet wet spinning. The all-biomass-based fibers comprised agar and cellulose nanocrystals (CNC) as the matrix and nanofiller, respectively, and were highly miscible in deionized water as a cosolvent. Based on rheological characterization, the optimal spinning concentration and temperature were set to 13% (w/v) and 95 °C, respectively. The dry-jet wet-spun agar-based fibers exhibited remarkable mechanical performance compared with previously reported agar-based materials. In particular, the 1 wt% CNC (with respect to the agar amount) simultaneously improved the Young’s modulus, strength, and toughness by 8.3, 4.8, and 16.4% (2.6 GPa, 93.5 MPa, and 7.8 MJ m−3), respectively, compared to those of the control agar fibers (2.4 GPa, 89.2 MPa, and 6.7 MJ m−3), overcoming the trade-off of stiffness-toughness for conventional nanocomposite systems. In addition, the agar/CNC nanocomposite fibers rapidly adsorbed Methylene blue within 90 min, which is significantly faster than that of the film-type agar adsorbent. Therefore, all-biomass-based agar/CNC fibers are a promising remedy for alleviating water pollution.
Publisher
한국유변학회
ISSN
1226-119X
Keyword (Author)
AgarCellulose nanocrystalDry-jet wet spinningNanocomposite fiber

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.