File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

양창덕

Yang, Changduk
Advanced Tech-Optoelectronic Materials Synthesis Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Three-in-One Strategy Enables Single-Component Organic Solar Cells with Record Efficiency and High Stability

Author(s)
Cheng, YujunHuang, BinMao, QilongHuang, XuexiangLiu, JiabinZhou, ChunxiangZhou, WenRen, XinyuanKim, SeoyoungKim, WonjunSun, ZheWu, FeiyanYang, ChangdukChen, Lie
Issued Date
2024-02
DOI
10.1002/adma.202312938
URI
https://scholarworks.unist.ac.kr/handle/201301/81497
Citation
ADVANCED MATERIALS, pp.2312938
Abstract
Single-component organic solar cells (SCOSCs) with covalently bonding donor and acceptor are becoming increasingly attractive because of their superior stability over traditional multicomponent blend organic solar cells (OSCs). Nevertheless, the efficiency of SCOSCs is far behind the state-of-the-art multicomponent OSCs. Herein, by combination of the advantages of three-component and single-component devices, this work reports an innovative three-in-one strategy to boost the performance of SCOSCs. In this three-in-one strategy, three independent components (PM6, D18, and PYIT) are covalently linked together to create a new single-component active layer based on ternary conjugated block copolymer (TCBC) PM6-D18-b-PYIT by a facile polymerization. Precisely manipulating the component ratios in the polymer chains of PM6-D18-b-PYIT is able to broaden light utilization, promote charge dynamics, optimize, and stabilize film morphology, contributing to the simultaneously enhanced efficiency and stability of the SCOSCs. Ultimately, the PM6-D18-b-PYIT-based device exhibits a power conversion efficiency (PCE) of 14.89%, which is the highest efficiency of the reported SCOSCs. Thanks to the aggregation restriction of each component and chain entanglement in the three-in-one system, the PM6-D18-b-PYIT-based SCOSC displays significantly higher stability than the corresponding two-component (PM6-D18:PYIT) and three-component (PM6:D18:PYIT). These results demonstrate that the three-in-one strategy is facile and promising for developing SCOSCs with superior efficiency and stability. This work proposes a facile three-in-one strategy by fusing the advantages of ternary blend system and single-component system for stable and efficient orgainic solar cells. The PM6-D18-b-PYIT-10-based three-in-one single-component device not only obtains a breakthrough efficiency of 14.89%, but also displays significantly higher stability than the corresponding two-component (PM6-D18:PYIT) and three-component (PM6:D18:PYIT), including the photostability, storage stability, and thermal stability. image
Publisher
WILEY-V C H VERLAG GMBH
ISSN
0935-9648
Keyword (Author)
block copolymerspolymerizationsolar cells
Keyword
POLYMERACCEPTORRECOMBINATION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.