BROWSE

Related Researcher

Author's Photo

Shin, Myoungsu
Sustainable Structural Systems Lab
Research Interests
  • Seismic design, Tall buildings, High performance composites, Ultrasonic non-destructive evaluation technologies

ITEM VIEW & DOWNLOAD

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

Cited 24 times inthomson ciCited 32 times inthomson ci
Title
Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior
Author
Shin, MyoungsuLafave, JM
Issue Date
2004-11
Publisher
TECHNO-PRESS
Citation
STRUCTURAL ENGINEERING AND MECHANICS, v.18, no.5, pp.645 - 669
Abstract
In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.
URI
https://scholarworks.unist.ac.kr/handle/201301/8136
URL
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=6344280889
ISSN
1225-4568
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU