BROWSE

Related Researcher

Author's Photo

Jeong, Won-Ki
High-performance Visual Computing Lab
Research Interests
  • Visualization, image processing, machine learning, parallel computing

ITEM VIEW & DOWNLOAD

Curvature-based anisotropic geodesic distance computation for parametric and implicit surfaces

Cited 3 times inthomson ciCited 5 times inthomson ci
Title
Curvature-based anisotropic geodesic distance computation for parametric and implicit surfaces
Author
Seong, Joon-KyungJeong, Won-KiCohen, Elaine
Keywords
Anisotropy; Geodesic; H-J equation; Normal curvature; Parametric and implicit surface; Tensor
Issue Date
2009-08
Publisher
SPRINGER
Citation
VISUAL COMPUTER, v.25, no.8, pp.743 - 755
Abstract
Distribution of geometric features varies with direction, including, for example, normal curvature. In this paper, this characteristic of shape is used to define a new anisotropic geodesic (AG) distance for both parametric and implicit surfaces. Local distance (LD) from a point is defined as a function of both the point and a unit tangent plane directions, and a total distance is defined as an integral of that local distance. The AG distance between points on the surface is the minimum total distance between them. The path between the points that attains the minimum is called the anisotropic geodesic path. Minimization of total distance to attain the AG distance is performed by associating the LD function with a tensor speed function that controls wave propagation in the convex Hamilton-Jacobi (H-J) equation solver. We present new distance metrics for both parametric and implicit surfaces based on the curvature tensor. In order to solve for the implicit AG, a bounded 3D H-J equation solver was developed. We present a second metric for the AG distance, a difference curvature tensor, for parametric surfaces. Some properties of both new AG distances are presented, including parameterization invariance. This AG path differs from the usual geodesic in that minimal path, i.e., lowest cost path, roughly speaking, minimizes an integral of curvature along the curve. Then, the effectiveness of the proposed AG distances as shape discriminators is demonstrated in several applications, including surface segmentation and partial shape matching.
URI
Go to Link
DOI
10.1007/s00371-009-0362-0
ISSN
0178-2789
Appears in Collections:
EE_Journal Papers
Files in This Item:
2-s2.0-68149091897.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU