File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이덕중

Lee, Deokjung
Computational Reactor physics & Experiment Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Monte Carlo Simulation of Neutronics Start-up Tests at China Experimental Fast Reactor (CEFR)

Author(s)
Choe, JiwonBatra, ChirayuKriventsev, VladimirLee, Deokjung
Issued Date
2020-03-29
DOI
10.1051/epjconf/202124710008
URI
https://scholarworks.unist.ac.kr/handle/201301/78563
Citation
PHYSOR 2020
Abstract
China Experimental Fast Reactor (CEFR) is a small size sodium-cooled fast reactor (SFR) with a high neutron leakage core fueled by uranium oxide. The CEFR core with 20 MW(e) power reached its first criticality in July 2010, and several start-up tests were conducted from 2010 to 2011. The China Institute of Atomic Energy (CIAE) proposed to release some of the neutronics start-up test data for the IAEA benchmark within the scope of the IAEA's coordinated research activities through the coordinated research project (CRP) on “Neutronics Benchmark of CEFR Start-Up Tests”, launched in 2018. This benchmark aims to perform validation and verification of the physical models and the neutronics simulation codes by comparing calculation results against collected experimental data. The six physics start-up tests considered for this CRP include evaluation of the criticality, control rod worth, void reactivity, temperature coefficient, swap reactivity, and foil irradiation. Twenty-nine participating research organizations are performing independent blind calculations during the first phase of the project. As a part of this coordinated research, IAEA performed neutronics calculations using Monte Carlo code SERPENT. Two kinds of 3D core models, homogenous and heterogeneous, were calculated using SERPENT, with ENDF/B-VII.0 continuous energy library. Preliminary results with a reasonably good estimation of criticality, as well as theoretically sound results of other five test cases, are available. The paper will discuss the core modelling assumptions, challenges and key findings of modelling a dense SFR core, preliminary results of the first phase of the CRP, heterogeneity impact analysis between homogenous core models and heterogeneous core models and future work to be performed as a part of this four-year project.
Publisher
PHYSOR(International Conference on Physics of Reactors)

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.