BROWSE

Related Researcher

Author's Photo

Jo, Wook
Sustainable Functional Ceramics Lab
Research Interests
  • Lead-free piezoceramics, ultra - low temperature sintering, ferroelectrics, relaxor ferroelectrics, 2D materials, magnetoelectric materials, multiferroics

ITEM VIEW & DOWNLOAD

CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3- (K0.5Na0.5)NbO3 lead-free piezoceramics

Cited 15 times inthomson ciCited 15 times inthomson ci
Title
CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3- (K0.5Na0.5)NbO3 lead-free piezoceramics
Author
Jo, WookOllagnier, Jean-BaptistePark, Jong-LoAnton, Eva-MariaKwon, O-JongPark, ChanSeo, Hyun-HoLee, Jong-SookErdem, EmreEichel, Ruediger-A.Roedel, Juergen
Keywords
A. Grain growth; B. Spectroscopy; C. Dielectric properties; C. Piezoelectric properties; Lead-free piezoceramics
Issue Date
2011-10
Publisher
ELSEVIER SCI LTD
Citation
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, v.31, no.12, pp.2107 - 2117
Abstract
CuO as a sintering additive was utilized to explore a low-temperature sintering of 0.92(Bi1/2Na1/2)TiO3-0.06BaTiO(3)-0.02(K0.5Na0.5)NbO3 lead-free piezoceramic which has shown a promise for actuator applications due to its large strain. The sintering temperature guaranteeing the relative density of greater than 98% is drastically decreased with CuO addition, and saturates at a temperature as low as similar to 930 degrees C when the addition level exceeds ca. 1 mol.%. Two distinguished features induced by the addition of CuO were noted. Firstly, the initially existing two-phase mixture gradually evolves into a rhombohedral single phase with an extremely small non-cubic distortion. Secondly, a liquid phase induced by the addition of CuO causes an abnormal grain growth, which can be attributed to the grain boundary reentrant edge mechanism. Based on these two observations, it is concluded that the added CuO not only forms a liquid phase but also diffuses into the lattice. In the meantime, temperature dependent permittivity measurements both on unpoled and poled samples suggest that the phase stability of the system is greatly influenced by the addition of CuO. Polarization and strain hysteresis measurements relate the changes in the phase stability closely to the stabilization of ferroelectric order, as exemplified by a significant increase in both the remanent strain and polarization values. Electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the stabilization of ferroelectric order originates from a significant amount of Cu2+ diffusing into the lattice on B-site. There, it acts as an acceptor and forms a defect dipole in association with a charge balancing oxygen vacancy.
URI
Go to Link
DOI
10.1016/j.jeurceramsoc.2011.05.008
ISSN
0955-2219
Appears in Collections:
MSE_Journal Papers
Files in This Item:
2-s2.0-79959365200.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU