File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조욱

Jo, Wook
Sustainable Functional Ceramics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3- (K0.5Na0.5)NbO3 lead-free piezoceramics

Author(s)
Jo, WookOllagnier, Jean-BaptistePark, Jong-LoAnton, Eva-MariaKwon, O-JongPark, ChanSeo, Hyun-HoLee, Jong-SookErdem, EmreEichel, Ruediger-A.Roedel, Juergen
Issued Date
2011-10
DOI
10.1016/j.jeurceramsoc.2011.05.008
URI
https://scholarworks.unist.ac.kr/handle/201301/7548
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79959365200
Citation
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, v.31, no.12, pp.2107 - 2117
Abstract
CuO as a sintering additive was utilized to explore a low-temperature sintering of 0.92(Bi1/2Na1/2)TiO3-0.06BaTiO(3)-0.02(K0.5Na0.5)NbO3 lead-free piezoceramic which has shown a promise for actuator applications due to its large strain. The sintering temperature guaranteeing the relative density of greater than 98% is drastically decreased with CuO addition, and saturates at a temperature as low as similar to 930 degrees C when the addition level exceeds ca. 1 mol.%. Two distinguished features induced by the addition of CuO were noted. Firstly, the initially existing two-phase mixture gradually evolves into a rhombohedral single phase with an extremely small non-cubic distortion. Secondly, a liquid phase induced by the addition of CuO causes an abnormal grain growth, which can be attributed to the grain boundary reentrant edge mechanism. Based on these two observations, it is concluded that the added CuO not only forms a liquid phase but also diffuses into the lattice. In the meantime, temperature dependent permittivity measurements both on unpoled and poled samples suggest that the phase stability of the system is greatly influenced by the addition of CuO. Polarization and strain hysteresis measurements relate the changes in the phase stability closely to the stabilization of ferroelectric order, as exemplified by a significant increase in both the remanent strain and polarization values. Electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the stabilization of ferroelectric order originates from a significant amount of Cu2+ diffusing into the lattice on B-site. There, it acts as an acceptor and forms a defect dipole in association with a charge balancing oxygen vacancy.
Publisher
ELSEVIER SCI LTD
ISSN
0955-2219

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.