File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Layer-Controlled Growth of Single-Crystalline 2D Bi2O2Se Film Driven by Interfacial Reconstruction

Author(s)
Kang, MinsooJeong, Han BeomShim, YoonsuChai, Hyun-JunKim, Yong-SungChoi, MinhyukHam, AyoungPark, CheolminJo, Min-kyungKim, Tae SooPark, HyeonbinLee, JaehyunNoh, GichangKwak, Joon YoungEom, TaeyongLee, Chan-WooChoi, Sung-YoolYuk, Jong MinSong, SeungwooJeong, Hu YoungKang, Kibum
Issued Date
2024-01
DOI
10.1021/acsnano.3c09369
URI
https://scholarworks.unist.ac.kr/handle/201301/72416
Citation
ACS NANO, v.18, no.1, pp.819 - 828
Abstract
As semiconductor scaling continues to reach sub-nanometer levels, two-dimensional (2D) semiconductors are emerging as a promising candidate for the post-silicon material. Among these alternatives, Bi2O2Se has risen as an exceptionally promising 2D semiconductor thanks to its excellent electrical properties, attributed to its appropriate bandgap and small effective mass. However, unlike other 2D materials, growth of large-scale Bi2O2Se films with precise layer control is still challenging due to its large surface energy caused by relatively strong interlayer electrostatic interactions. Here, we present the successful growth of a wafer-scale (similar to 3 cm) Bi2O2Se film with precise thickness control down to the monolayer level on TiO2-terminated SrTiO3 using metal-organic chemical vapor deposition (MOCVD). Scanning transmission electron microscopy (STEM) analysis confirmed the formation of a [BiTiO4](1-) interfacial structure, and density functional theory (DFT) calculations revealed that the formation of [BiTiO4](1-) significantly reduced the interfacial energy between Bi2O2Se and SrTiO3, thereby promoting 2D growth. Additionally, spectral responsivity measurements of two-terminal devices confirmed a bandgap increase of up to 1.9 eV in monolayer Bi2O2Se, which is consistent with our DFT calculations. Finally, we demonstrated high-performance Bi2O2Se field-effect transistor (FET) arrays, exhibiting an excellent average electron mobility of 56.29 cm(2)/(Vs). This process is anticipated to enable wafer-scale applications of 2D Bi2O2Se and facilitate exploration of intriguing physical phenomena in confined 2D systems.
Publisher
AMER CHEMICAL SOC
ISSN
1936-0851
Keyword (Author)
metal-organic chemical vapor depositionbismuthoxyselenideinterfacial reconstructionsinglecrystalmonolayerlarge-scalefield-effecttransistor
Keyword
2-DIMENSIONAL MATERIALSMOBILITYGRAPHENEPROSPECTS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.