File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Silicon-Encapsulating Spherical Carbon Microbeads for Lithium ion Batteries

Author(s)
Mok, Duck Gyun
Advisor
Lee, Kyu Tae
Issued Date
2014-08
URI
https://scholarworks.unist.ac.kr/handle/201301/71823 http://unist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001756465
Abstract
Recently, remarkable improvements in the electrochemical performance of Si materials have been achieved through several strategies including the use of a buffer matrix such as Si/carbon composites and control of the morphology. However, the inherent volume change of Si still induces electrode expansion and external cell deformation, although the electrical contact loss is strongly inhibited. The cell deformation is the critical factor limiting the commercialization of Si-based anode materials, and is as important as electrochemical performance from a practical point of view. An acceptable degree of volume change for the electrodes is about 10 %, similar to that of commercialized graphite electrodes. A few approaches have been taken to alleviate cell deformation, including control of electrode porosity and the use of functional binders.
In this paper, Silicon-Encapsulating Spherical Carbon Microbeads are synthesized not only to inhibit the electrode degradation caused by electrode thickness change during cycling, but also to increase tap density of electrodes
Publisher
Ulsan National Institute of Science and Technology

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.