Related Researcher

Author's Photo

Shim, Sang-Hee
Shim Research Lab
Research Interests
  • Super-resolution Optical Imaging
  • Single-molecule Biophysics
  • Ultrastructural Dynamics
  • Single-cell Systems Biology


Two-dimensional Infrared Spectroscopy Provides Evidence of an Intermediate in the Membrane-catalyzed Assembly of Diabetic Amyloid

Cited 33 times inthomson ciCited 33 times inthomson ci
Two-dimensional Infrared Spectroscopy Provides Evidence of an Intermediate in the Membrane-catalyzed Assembly of Diabetic Amyloid
Ling, Yun L.Strasfeld, David B.Shim, Sang-HeeRaleigh, Daniel P.Zanni, Martin T.
Amyloid depositions; Amyloid deposits; Amyloid formations; Cell mass; Cytotoxic; In-vivo; Ir spectroscopies; IR spectrum; Kinetic traces; Lipid vesicles; Secondary structures; Self-assembly process; Spectral features; Structural features; Time evolutions; Two-dimensional infrared (2D IR); Two-dimensional infrared spectroscopies; Type-2 diabetes
Issue Date
JOURNAL OF PHYSICAL CHEMISTRY B, v.113, no.8, pp.2498 - 2505
Islet amyloid polypeptide (IAPP, also known as amylin) is responsible for pancreatic amyloid deposits in type 2 diabetes. The deposits, as well as intermediates in their assembly, are cytotoxic to pancreatic β-cells and contribute to the loss of β-cell mass associated with type 2 diabetes. The factors that trigger islet amyloid deposition in vivo are not well understood, but peptide membrane interactions have been postulated to play an important role in islet amyloid formation. To better understand the role of membrane interactions in amyloid formation, two-dimensional infrared (2D IR) spectroscopy was used to compare the kinetics of amyloid formation for human IAPP both in the presence and in the absence of negatively charged lipid vesicles. Comparison of spectral features and kinetic traces from the two sets of experiments provides evidence for the formation of an ordered intermediate during the membrane-mediated assembly of IAPP amyloid. A characteristic transient spectral feature is detected during amyloid formation in the presence of vesicles that is not observed in the absence of vesicles. The spectral feature associated with the intermediate raises in intensity during the self-assembly process and subsequently decays in intensity in the classic manner of a kinetic intermediate. Studies with rat IAPP, a variant that is known to interact with membranes but does not form amyloid, confirm the presence of an intermediate. The analysis of 2D IR spectra in terms of specific structural features is discussed. The unique combination of time and secondary structure resolution of 2D IR spectroscopy has enabled the time-evolution of a hIAPP intermediate to be directly monitored for the first time. The data presented here demonstrates the utility of 2D IR spectroscopy for studying membrane-catalyzed amyloid formation.
Go to Link
Appears in Collections:
BME_Journal Papers
Files in This Item:
2-s2.0-65249173508.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record


  • mendeley


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.