BROWSE

Related Researcher

Author's Photo

Kim, Youngsik
YK Research
Research Interests
  • Ionic conducting ceramic electrolyte membranes, energy conversion and storage materials and devices

ITEM VIEW & DOWNLOAD

Anomalous ionic conductivity increase in Li2S+GeS2+GeO2 glasses

Cited 35 times inthomson ciCited 36 times inthomson ci
Title
Anomalous ionic conductivity increase in Li2S+GeS2+GeO2 glasses
Author
Kim, YoungsikSaienga, JasonMartin, Steve W.
Keywords
Chalcogenaide glasses; Li batteries; Oxide phase; Sulfide glass
Issue Date
2006-08
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY B, v.110, no.33, pp.16318 - 16325
Abstract
Numerous studies of the ionic conductivities in oxide-doped chalcogenaide glasses have shown the anomalous result that the ionic conductivity actually increases significantly (by more than a factor of 10 in some cases) by the initial addition of an oxide phase to a pure sulfide glass. After this initial sharp increase, the conductivity then monotonically decreases with further oxide addition. While this behavior is important to the application of these glasses for Li batteries, no definitive understanding of this behavior has been elucidated. To examine this effect further and more completely, the ionic conductivities of 0.5Li2S + 0.5[(1 - x)GeS2 + xGeO 2] glasses have been measured on disc-type bulk glasses. The ionic conductivity of the 0.5Li2S + 0.5GeS2 (x = 0) glass was observed to increase from 4.3 × 10-5 (Ω cm)-1 to 1.5 × 10-4 (Ω cm)-1 while the activation energy decreased to 0.358 eV from 0.385 eV by the addition of 5 mol % of GeO2. Further addition of GeO2 monotonically decreased the conductivity and increased the activation energy. On the basis of our previous studies of the structure of this glass system, the Anderson and Stuart model was applied to explain the decrease in the activation energy and increase in the conductivity. It is suggested that the "doorway" radius between adjacent cation sites increases slightly (from ∼0.29(±0.05) A to ∼0.40(±0.05) A) with the addition of oxygen to the glass and is proposed to be the major cause in decreasing the activation energy and thereby increasing the conductivity. Further addition of oxides appears to contract the glass structure (and the doorway radius) leading to an increase in the conductivity activation energy and a decrease in the conductivity.
URI
Go to Link
DOI
10.1021/jp060670c
ISSN
1520-6106
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
2-s2.0-33748631846.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU