File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

A Degradation-Informed Battery-Swapping Policy for Fleets of Electric or Hybrid-Electric Vehicles

Author(s)
Almuhtady, AhmadLee, SeungchulRomeijn, EdwinWynblatt, MichaelNi, Jun
Issued Date
2014-11
DOI
10.1287/trsc.2013.0494
URI
https://scholarworks.unist.ac.kr/handle/201301/6700
Fulltext
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2013.0494
Citation
TRANSPORTATION SCIENCE, v.48, no.4, pp.609 - 618
Abstract
Motivated by high oil prices, several large fleet companies initiated future plans to hybridize their fleets to establish immunity of their optimized business models against severe oil price fluctuations, and adhere to increasing awareness of environmentally friendly solutions. The hybridization projects increased maintenance costs especially for costly and degradable components such as Li-ion batteries. This paper introduces a degradation-based resource allocation policy to optimally utilize batteries on fleet level. The policy, denoted as degradation-based swapping optimization, incorporates optimal implementation of swapping and substitution actions throughout a plan of finite-time horizon to minimize projected maintenance costs. The swapping action refers to the interchange in the placement of two batteries within a fleet. The substitution action refers to the replacement of degraded batteries with new ones. The policy takes advantage of the different degradation rates of the state of health of the batteries because of different loading conditions, achieving optimal placement at different time intervals throughout the plan horizon. A mathematical model for the policy is provided. The optimization of the generated model is studied through several algorithms. Numerical results for sample problems are obtained to illustrate the capability of the proposed policy in establishing substantial savings in the projected maintenance costs compared to other policies.
Publisher
INFORMS
ISSN
0041-1655

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.