BROWSE

Related Researcher

Author's Photo

Choi, Jaesik
Statistical Artificial Intelligence Lab
Research Interests
  • Artificial intelligence, machine learning, deep learning, robotics, automatic statistician, semantic segmentation, fault detection

ITEM VIEW & DOWNLOAD

Use of Machine Learning Methods to Reduce Predictive Error of Groundwater Models

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Use of Machine Learning Methods to Reduce Predictive Error of Groundwater Models
Author
Xu, TianfangValocchi, Albert J.Choi, JaesikAmir, Eyal
Keywords
SUPPORT VECTOR MACHINES; REGRESSION; UNCERTAINTY; CALIBRATION; PARAMETERS; INFORMATION; SELECTION; TUTORIAL; RIVER
Issue Date
2014-05
Publisher
WILEY-BLACKWELL
Citation
GROUND WATER, v.52, no.3, pp.448 - 460
Abstract
Quantitative analyses of groundwater flow and transport typically rely on a physically-based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data-driven models (DDMs) to reduce the predictive error of physically-based groundwater models. Two machine learning techniques, the instance-based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real-world case studies of the Republican River Compact Administration model and the Spokane Valley-Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root-mean-square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically-based model.
URI
Go to Link
DOI
10.1111/gwat.12061
ISSN
0017-467X
Appears in Collections:
EE_Journal Papers
Files in This Item:
000335256600015.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU