BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Artificial Intelligence, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Improved Ocean-Fog Monitoring Using Himawari-8 Geostationary Satellite Data Based on Machine Learning With SHAP-Based Model Interpretation

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Improved Ocean-Fog Monitoring Using Himawari-8 Geostationary Satellite Data Based on Machine Learning With SHAP-Based Model Interpretation
Author
Sim, SeongmunIm, Jungho
Issue Date
2023-08
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, v.16, pp.7819 - 7837
Abstract
Ocean-fog is a type of fog that forms over the ocean and has a visibility of less than 1 km. Ocean-fog frequently causes incidents over oceanic and coastal regions; ocean-fog detection is required regardless of the time of day. Ocean-fog has distinct thermo-optical properties, and spatially and temporally extensive ocean-fog detection methods based on geostationary satellites are typically employed. Infrared (IR) channels of Himawari-8 were used to construct three machine-learning models for the continuous detection of ocean-fog. In contrast, visible channels are valid only during the daytime. As control models, we used fog products from the National Meteorological Satellite Center (NMSC) and machine-learning models trained by adding a visible channel. The extreme gradient boosting model utilizing IR channels corrected ocean-fog perfectly day and night, with the highest F1 score of 97.93% and a proportion correct (PC) of 98.59% throughout the day. In contrast, the NMSC product had a probability of detection of 87.14%, an F1 score of 93.13%, and a PC of 71.9%. As demonstrated by the qualitative evaluation, the NMSC product overestimates clouds over small and coarsely textured ocean-fog regions. In contrast, the proposed model distinguishes between ocean-fog, clear skies, and clouds at the pixel scale. The Shapley additive explanation analysis demonstrated that the difference between channels 14 and 7 was very useful for ocean-fog detection at night, and its extremely low values contributed significantly to distinguishing nonfog during the daytime. Channel 15, affected by water vapor absorption, contributed most to ocean-fog detection among atmospheric window channels. The research findings can be used to improve operational ocean-fog detection and forecasting.
URI
https://scholarworks.unist.ac.kr/handle/201301/65892
DOI
10.1109/JSTARS.2023.3308041
ISSN
1939-1404
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU