File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

석상일

Seok, Sang Il
Laboratory for Energy Harvesting Materials and Systems
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Enhancing Stability and Efficiency of Perovskite Solar Cells with a Bilayer Hole Transporting Layer of Nickel Phthalocyanine and Poly(3-Hexylthiophene)

Author(s)
Kim, HyeonwooLee, Do YoonLim, JihooKim, JongbeomPark, JaewangSeidel, JanYun, Jae SungSeok, Sang Il
Issued Date
2023-11
DOI
10.1002/aenm.202301046
URI
https://scholarworks.unist.ac.kr/handle/201301/65173
Citation
ADVANCED ENERGY MATERIALS, v.13, no.35, pp.2301046
Abstract
To expedite the commercialization of perovskite solar cells (PSCs), researchers are exploring the feasibility of employing nickel phthalocyanine (NiPc) as a hole transport material (HTM) due to its cost-effectiveness, excellent thermal stability, and suitability for solution coating. However, the low LUMO energy level of the NiPc may limit its ability to block photoelectrons generated in the perovskite layer from recombining with holes, which can reduce the overall efficiency of the solar cell. One solution is to use cascaded bilayers with HTMs that have relatively higher LUMO levels. In this study, a bilayer consisting of NiPc and poly(3-hexylthiophene) (P3HT) is employed as the HTM, where the P3HT exhibits vertical phase separation during the coating process. By optimizing the mixing amount of P3HT into the NiPc, a record power conversion efficiency of 23.11%, the highest reported for NiPc-based PSCs is achieved. Moreover, an excellent long-term stability is demonstrated by encapsulating the PSC in polyisobutylene, with the device retaining 90% of its initial efficiency after exposure to 85 & DEG;C and 85% relative humidity for 1000 h.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
1614-6832
Keyword (Author)
bilayer hole transporting layersnickel phthalocyanineperovskite solar cellspoly(3-hexylthiophene)

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.