File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김귀용

Kim, Kwiyong
Redox and electrochemistry advancing clean technologies Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Coupling nitrate capture with ammonia production through bifunctional redox-electrodes

Author(s)
Kim, KwiyongZagalskaya, AlexandraNg, Jing LianHong, JaeyoungAlexandrov, VitalyPham, Tuan AnhSu, Xiao
Issued Date
2023-02
DOI
10.1038/s41467-023-36318-1
URI
https://scholarworks.unist.ac.kr/handle/201301/65099
Citation
NATURE COMMUNICATIONS, v.14, no.1, pp.823
Abstract
Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation of nitrate through solely electrochemical control. Electrochemically-reversible nitrate uptake greater than 70 mg/g can be achieved, with electronic structure calculations and spectroscopic measurements providing insight into the underlying role of hydrogen bonding for nitrate selectivity. Using agricultural tile drainage water containing dilute nitrate (0.27 mM), we demonstrate that the bifunctional electrode can achieve a 8-fold up-concentration of nitrate, a 24-fold enhancement of ammonium production rate (108.1 ug h−1 cm−2), and a >10-fold enhancement in energy efficiency when compared to direct electrocatalysis in the dilute stream. Our study provides a generalized strategy for a fully electrified reaction-separation pathway for modular nitrate remediation and ammonia production.
Publisher
NATURE PORTFOLIO
ISSN
2041-1723
Keyword
TOTAL-ENERGY CALCULATIONSPAIRED ELECTROLYSISREMOVALWATERPOLYANILINEREDUCTIONNITROGENPOLYMER

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.